What to know
Summary
Occupational health has evolved into a largely technical field dedicated to identifying and eliminating the physical, chemical, and biologic hazards found at the workplace.1 Central to this approach has been the distinction between work-related and non-work-related exposures, injuries, and illnesses which has become a line of demarcation between occupational safety and health and other disciplines within public health.23 However, there is growing recognition of the need for a more holistic and nuanced perspective on work and its impact on population health.45 The take-home pathway, in which a worker contaminates shared family spaces with toxic exposures that have been tracked home from the workplace, illustrates the limitations of addressing issues only in the workplace or only in the community.
Lead has been at the center of research on the take-home pathway for many years. The Centers for Disease Control and Prevention (CDC) has played a critical role through the years to identify and document many children that have become lead poisoned because of the occupation of a household member.67 Sadly, cases of childhood lead poisoning associated with an occupational origin persist and are common.
The work with take-home lead has expanded to include take-home exposures to other chemicals such as pesticides, asbestos, beryllium, and mercury.89101112 More recently, NIOSH researchers have found an expanded version of the take-home exposure model useful in explaining the impact of work-related psycho-social factors, such as fatigue and stress on family health as well. Building on the concept of take-home exposures, we also consider how factors outside of work can have a significant impact (both positive and negative) on workplace exposures and prevention measures.
Using lead as an example, a recent review article in the Annals of Work Exposures and Health13 calls for greater recognition of take-home exposures as a public health hazard. Besides summarizing the many industries where take home exposure cases have been documented and the many different type of contaminants that become take-home exposures, the review also identifies the many factors and pathways that contribute to this problem. The review emphasizes that those at greatest risk are often workers who experience various forms of structural vulnerability (i.e. racism, sexism, etc.) in their work as well as in the places where they live.
The article explains how take-home exposures are wrapped up in larger, systemic factors that create persistent health disparities. These include precarious employment, such as among contractors and immigrants, who often fear losing their jobs if they raise concerns about their working conditions. Vulnerable workers and their families are also more likely to face environmental injustices in housing and neighborhoods which can aggravate the impact of take-home exposures. Workers often experience more than one of these structural disadvantages simultaneously. These overlapping structural vulnerabilities have been described in recent publications on young immigrant workers in the construction industry.1415
To prevent the chronic, low-level, take-home exposures, both chemical and psycho-social, that are particularly harmful for developing children, a multi-tier intervention approach including interventions at the workplace, home, and community levels is needed. This serves as a reminder of the undeniable role that occupational health and safety has in community health and the need to adopt a more comprehensive understanding of the relationship between work and health.
How has your workplace or community addressed the issues surrounding take-home or spill-over exposures from work to home? Watch for upcoming blogs on take-home lead and the work-to-home spill-over of stress and fatigue.
Author Information
Diana Ceballos, PhD, MS, CIH, is an Assistant Professor in the Department of Environmental Health at the Boston University School of Public Health. She was an industrial hygienist at the NIOSH HHE Program from 2010-2015.
Michael Flynn, MA, is the Coordinator of the Occupational Health Equity Program at the National Institute for Occupational Safety and Health.
- Peckham, Trevor K, Marissa G Baker, Janice E Camp, Joel D Kaufman, Noah S Seixas 2017. “Creating a Future for Occupational Health.” Ann Work Expo Health 61:3–15.
- Flynn, M. A. (2018). Im/migration, Work, and Health: Anthropology and the Occupational Health of Labor Im/migrants. Anthropology of Work Review, 39(2), 116-123. doi: 10.1111/awr.12151
- Flynn MA, Wickramage K. (2017). Leveraging the Domain of Work to Improve Migrant Health. Int. J. Environ. Res. Public Health 14(10): 1248, doi: 10.3390/ijerph14101248.
- Ahonen EQ, Fujishiro K, Cunningham TR, Flynn MA. (2018). Work as an Inclusive Part of Population Health Inequities Research and Prevention. American Journal of Public Health 108(3): 306-311. doi:10.2105/AJPH.2017.304214
- Schulte Paul, Harri Vainio. 2010 “Well-being at Work – Overview and Perspective.” Scandinavian Journal of Work, Environment & Health 36:422-29.
- Centers for Disease Control and Prevention, National Center for Environmental Health (CDC/NCEH). (2020). Childhood Lead Poisoning Prevention, At-risk Populations. Accessed on 16 March 2020 from https://www.cdc.gov/nceh/lead/prevention/populations.htm
- Centers for Disease Control, National Institute for Occupational Safety and Health (CDC/NIOSH). Lead – Workplace Lead Publications. Accessed on 16 March 2020 from https://www.cdc.gov/niosh/topics/lead/publications.html#2
- Donovan E.P., Donovan B.L., McKinley M.A., Cowan D.M., Paustenbach D.J. (2012). Evaluation of take home (para-occupational) exposure to asbestos and disease: a review of the literature. Crit Rev Toxicol, 42(9):703-31.
- Fenske RA, Lu C, Negrete M, Galvin K. (2013). Breaking the take home pesticide exposure pathway for agricultural families: Workplace predictors of residential contamination. American Journal of Industrial Medicine; 56(9):1063-1071. doi:10.1002/ajim.22225.
- Sanderson W.T., Henneberger P.K., Martyny J, Ellis K, Mroz M.M., Newman L.S. (1999) Beryllium contamination inside vehicles of machine shop workers. Appl Occup Environ Hyg. 14(4):223-30.
- Suarez-Lopez JR, Jacobs DR, Himes JH, Alexander BH, Lazovich D, Gunnar M. (2012). Lower acetylcholinesterase activity among children living with flower plantation workers. Environmental Research; 114:53-59. doi:10.1016/j.envres.2012.01.007.
- Wilson E, Lafferty J.S., Thiboldeaux R, Tomasallo C, Grajewski B, Wozniak R, Meiman J. (2018) Occupational Mercury Exposure at a Fluorescent Lamp Recycling Facility – Wisconsin, 2017. MMWR 67(27):763-766.
- Kalweit A, Herrick RF, Flynn MA, Spengler J, Berko K, Levy J, Ceballos DM. Eliminating Take-home Exposures: Recognizing the Role of Occupational Health and Safety in Broader Community Health. Annals of Work Exposures and Health. 2020. Epub.
- Cunningham, T. R., Guerin, R. J., Keller, B. M., Flynn, M. A., Salgado, C., & Hudson, D. (2018). Differences in safety training among smaller and larger construction firms with non-native workers: evidence of overlapping vulnerabilities. Safety science, 103, 62-69.
- National Institute for Occupational Safety and Health and American Society of Safety Engineers (NIOSH/ASSE). (2015) Overlapping vulnerabilities: the occupational safety and health of young workers in small construction firms. By Flynn MA, Cunningham TR, Guerin RJ, Keller B, Chapman LJ, Hudson D, Salgado C. DHHS NIOSH Publication No. 2015-178. Cincinnati, OH: U.S. Department of Health and Human Services, Centers for Disease Control and Prevention.