Economic analysis of COVID-19 vaccination

University of Michigan
COVID-19 Vaccination Modeling Team

ACIP Meeting June 24, 2024

Study team

University of Michigan

- Lisa A. Prosser, PhD, Principal Investigator
- David W. Hutton, PhD, Co-Investigator
- Acham Gebremariam, MS, Programmer/Analyst
- Angela Rose, MS, MPH, Project Manager
- Christina Nyamuswa, Research Assistant

Wake Forest University

Cara Janusz, PhD

Centers for Disease Control and Prevention

- Jamie Pike, PhD, Health Economist, Project officer
- Megan Wallace, DrPH, Epidemiologist
- Ismael Ortega-Sanchez, PhD, Senior Economist
- Andrew Leidner, PhD, Economist
- Fangjun Zhou, PhD, Health Scientist
- Melisa Shah, MD, MPH, Medical Epidemiologist
- Danielle Moulia, MPH, Health Scientist
- Ruth Link-Gelles, PhD, Epidemiologist
- Sharon Saydah, PhD, Epidemiologist

Expert panelists – Pediatric Model

Matthew Daley, MD, University of Colorado School of Medicine Rachel Gross, MD, New York University Grossman School of Medicine Sean O'Leary, MD, University of Colorado School of Medicine Peter Szilagyi, MD, MPH, University of California, Los Angeles

Conflict of interest statement

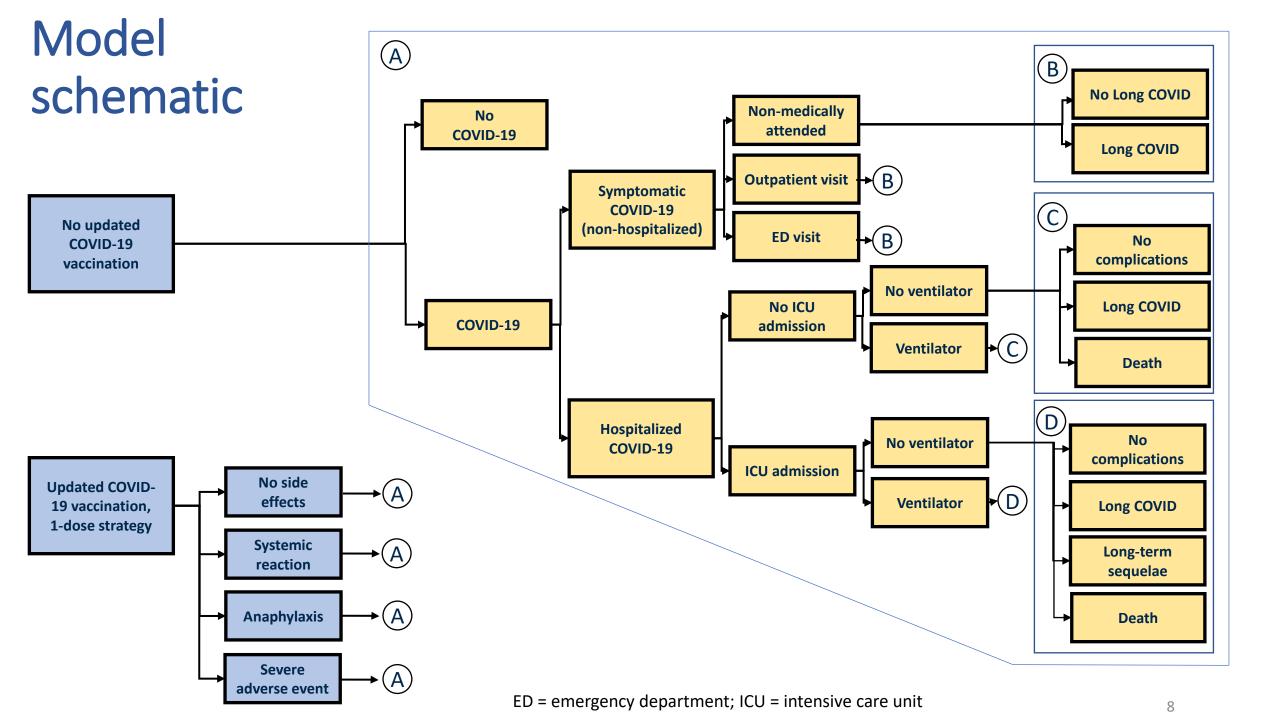
Authors have no known conflicts of interest.

Objectives

- Original aims*:
 - Estimate annual disease burden and healthcare utilization associated with COVID-19 illness and COVID-19 booster vaccination, including cases of symptomatic illness, hospitalizations, deaths, adverse events, costs, and quality-adjusted life years
 - Project cost-effectiveness of an updated mRNA booster against COVID-19-associated illness in persons ages ≥18 years
- Updates for this Phase 3 model:
 - Addition of pediatric age groups: 5-11y, 12-17y
 - Updates to adult model to reflect rapidly evolving evidence base

^{*} Earlier analyses from this model were presented to ACIP in September 2023 and February 2024: Prosser, Lisa A. (2023). Economic Analysis of Vaccination with mRNA Booster Dose against COVID-19 Among Adults; Prosser, Lisa A (2024). Economic analysis of an additional dose of COVID-19 vaccine

Phase 3 Updates


<u>Pediatric Model - new</u>

- 1. Epidemiologic inputs
- 2. Seasonality-adjusted vaccine impact
- 3. Cost inputs
- 4. Quality Adjustments

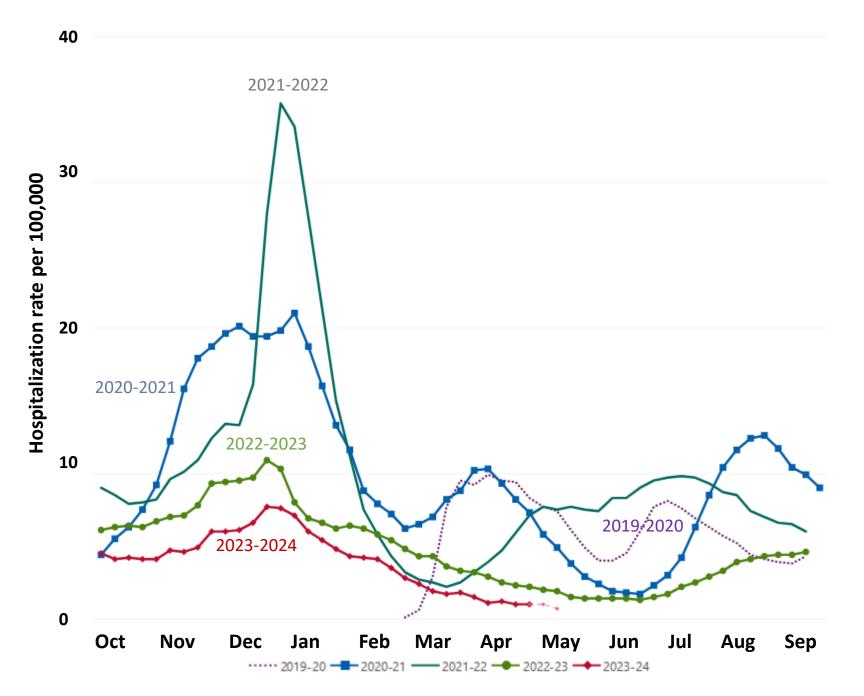
Adult Model - revised

- 1. Epidemiologic inputs
 - Hospitalization rates more recent, lower
 - Probability of Long COVID stratified by illness severity
- 2. Cost inputs
 - Costs & productivity losses associated with Long COVID - updated
 - Vaccine dose cost updated to CDC list price
- 3. Quality adjustments
 - Symptomatic illness updated

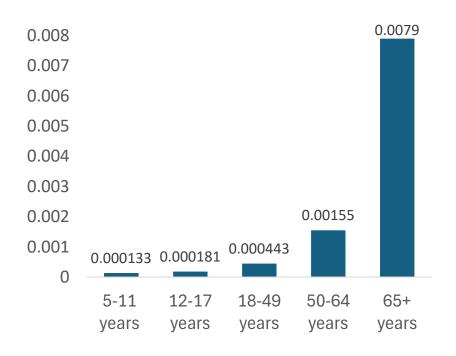
Methods

Analysis Plan

- Project health and economic outcomes stratified by intervention strategy and by age subgroups (5-11y, 12-17y, 18-49y, 50-64y, 65+y)
 - Cases
 - Hospitalizations
 - Deaths
 - Costs
 - QALYs
 - Adverse events
- Calculate incremental cost-effectiveness ratios comparing updated COVID-19 vaccination to no updated vaccination (societal perspective)
- Conduct base case and uncertainty analyses (one-way sensitivity and scenario analyses)


Model inputs

Probability of symptomatic illness, annualized


Age	Base case	Source			
		Low	High	300.100	
5-11 years	0.3145	0.1790	0.4510	Assumption based on adult	
12-17 years	0.3145	0.1790	0.4510	data*	
18-49 years	0.3145	0.2858	0.3444	HEROES-	
50-64 years	0.2841	0.2438	0.3274	RECOVER Dec 2022- May	
65+ years	0.3339	0.2312	0.4510	2023	

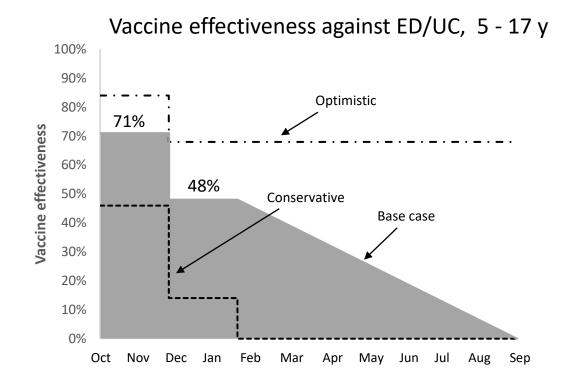
^{*}Base case assumed to be the same as 18-49 years with a wider range for sensitivity analysis

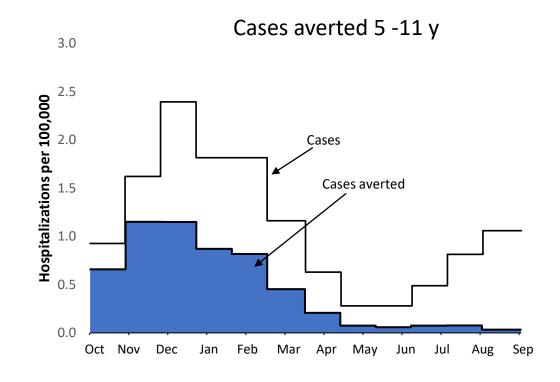
Weekly rates of COVID-19 associated hospitalizations by season, all ages

Probability of hospitalization, annualized

Age	Base case	Range for sens	sitivity analysis
Age	Dase case	Low	High
5-11 years	0.000133	0.000034	0.000336
12-17 years	.2-17 years 0.000181		0.000456
18-49 years	0.000443	0.000101	0.002040
50-64 years	0.001550	0.000413	0.004790
65+ years	0.007900	0.002450	0.020900

Source: Derived using COVID-NET data (October 2022-September 2023) adjusted by the probability of hospitalization attributable to COVID-19 by quarter. The upper limit is from COVID-NET data (October 2022-March 2023), unadjusted by the probability of hospitalization attributable to COVID-19.


Probability and duration of Long COVID, by age


Age group	Initial illness	Probability of	Range for s anal	•	Median duration	Source
0.0	severity	severity Long COVID		High	(months)	
	Symptomatic	0.002	0.002	0.003	5.8	- Assumption
5-17 y	Outpatient	0.005	0.003	0.006	7.6	based on adult
	Hospitalized	0.008	0.003	0.013	8.9	data*
	Symptomatic	0.011	0.009	0.013	5.8	INSPIRE, unpublished data
18+ y	Outpatient	0.023	0.017	0.029	7.6	Dec 2020 - Mar
	Hospitalized	0.040	0.017	0.064	8.9	2023. Montoy and Ford, 2023**

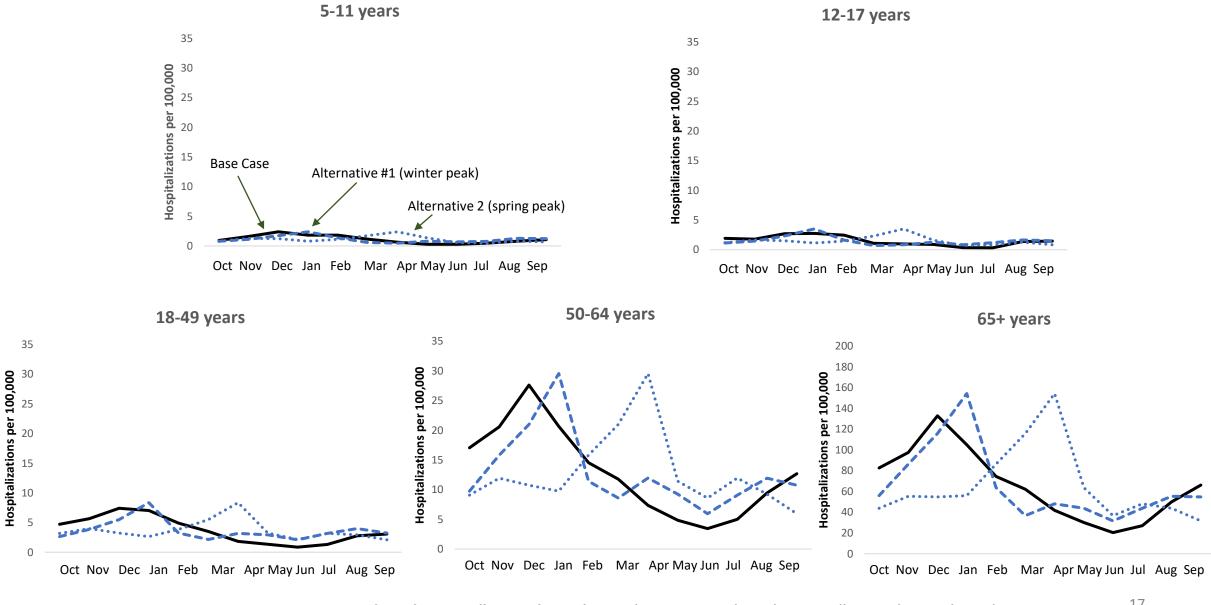
^{*} Duration assumed to be the same as 18+ y. Probabilities calibrated to national data from the National Center for Health Statistics (Vahratian 2023)

^{**} Derived using data on extreme fatigue and cognitive difficulties from INSPIRE (Montoy and Ford 2023, INSPIRE unpublished data) calibrated to national data from the National Center for Health Statistics (Adjaye-Gbewonyo 2023)

Seasonality-adjusted vaccine impact

Λσο	Base case	Range for sens	sitivity analysis	Source
Age Base case		Low	High	Jource
5-11 years	0.423	0.133	0.711	VISION
3 II years	0	0.200	0.7 = =	unpublished data*

^{*}Sept 2023-May 2024


Seasonality-adjusted vaccine impact against symptomatic illness/hospitalization

Age	Base case	Range for sens	Source	
7.50		Low	High	000.100
5-11 years	0.423	0.133	0.711	VISION,
12-17 years	0.422	0.136	0.713	Assumption*
18-49 years	0.360	0.140	0.475	VISION, IVY,
50-64 years	0.357	0.141	0.475	seasonality
65+ years	0.347	0.134	0.468	adjusted**

^{*} VISION data for Sept 2023-May 2024, adjusted VE against emergency department/urgent care visits was applied to pediatric age-group specific hospitalization rates from COVID-NET to derive seasonality-adjusted vaccine impact

^{**} Using data on bivalent booster data from Sep 2022-May 2023. Range includes minimum and maximum from both data sources, min: conservative approach (VE at 180 days=0) and max: optimistic approach (VE at 180 days=VE at 365 days); assumed same VE for symptomatic illness as hospitalization, seasonality adjusted

Alternative seasonality assumptions – winter, spring peaks

Vaccination-related costs

- Direct medical costs of vaccine dose, administration fee, and adverse events
- Time costs for recipients or caregivers; vary by setting; children ages 5-11 years most likely to be vaccinated in physician office setting

Table. Vaccine dose cost

Дао	Base case	Range for sens	Source		
Age	base case	Low*	High	Jource	
5-11 years **	\$89	\$30	\$130	CDC Va asia a	
12-17 years**	\$102	\$30	\$130	CDC Vaccine	
18+ years***	\$119	\$30	\$130	Price List	

^{*} Lower bound reflects price of bivalent boosters as of March 2023.

Note: Age 12+ private sector/CDC contract prices: Moderna \$128/\$85.91; Novavax \$130/\$58; Pfizer \$115/\$97.75

Age 5-11 private sector/CDC contract prices: Moderna \$128/\$85.91; Pfizer \$77/\$65.45

Costing year: 2023

^{**} Assumes 50% CDC contract pricing and 50% private sector pricing

^{***}Assumes 12.8% receive vaccines through government programs (Source: CDC unpublished data)

Direct medical costs (supplementary slides)

- Vaccination-related adverse events
- OTC & prescription medications for medically-attended nonhospitalized illness
- Outpatient visit (claims data)
- Emergency department visit
- Hospitalizations with and without complications (ventilator assistance, ICU stay)
- Long COVID pediatric estimates based on adult data

Time costs/productivity losses* (supplementary slides)

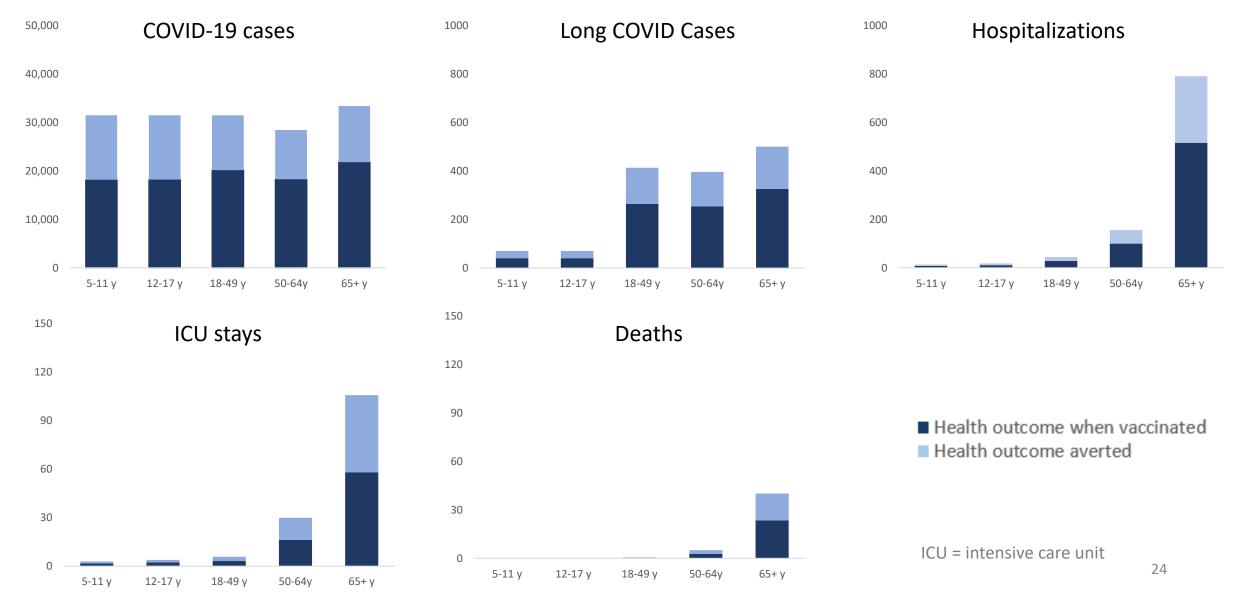
- Vaccination receipt
- Vaccination-related adverse events
- Outpatient visit
- Emergency department visit
- Hospitalizations with and without complications (ventilator assistance, ICU stay)
- Long COVID
- Deaths

^{*}Caregiver time costs or productivity losses for pediatric age groups ICU = intensive care unit

QALYs lost, COVID-19 illness & hospitalization

Age	Page Cage	Range for Sensi	tivity Analysis	CALD	Cauraa				
Age	Base Case	Low	High	QALD	Source				
Symptomatic illness									
5-17 years	0.0057	0.0030	0.0085	2.1					
3-17 years	0.0037	0.0030	0.0065	(1.1 - 3.1)	Soare 2023				
10 L voors	0.0046	0.0018	0.0074	1.7	30a16 2023				
18+ years	0.0046	0.0018	0.0074	(0.7 - 2.7)					
Hospitalization, r	no ICU stay								
F 17 voors	0.0180	0.0054	0.0225	6.9					
5-17 years	0.0189	0.0054	0.0325	(2.0 - 11.9)	Soare 2023				
10 L voors	0.0174	0.0038	0.0310	6.4	30016 2023				
18+ years	0.0174	0.0038	0.0310	(1.4 - 11.3)					
Hospitalization, v	with ICU stay, ve	ntilator assistance							
F 47	0.0002	0.0633	0.1160	32.2					
5-17 years	0.0883	0.0632	0.1169	(23.1 - 42.7)	Marcan 2022				
10.1	0.0204	0.0331	0.0503	14.4	Mercon 2023				
18+ years	0.0394	0.0231	0.0583	(8.5 - 21.3)					

ICU = intensive care unit; QALD = quality-adjusted life day; QALY = quality-adjusted life year


Results

Disaggregated results, per 100,000 people, preliminary estimates

Λσο	Age		Health outcomes			Health outcomes averted					
group	Strategy	Cases	Long COVID	Hosp	ICU	Deaths	Cases	Long COVID	Hosp	ICU	Deaths
5-11 y	No updated vax	31,450	71	13.3	2.7	0.12	-	-	-	-	-
	Updated Covid-19 vax, 1-dose	18,147	41	7.7	1.6	0.07	13,303	30	5.6	1.2	0.05
12-17 y	No updated vax	31,450	72	18.1	3.8	0.12	-	-	-	-	-
	Updated Covid-19 vax, 1-dose	18,178	41	10.5	2.2	0.07	13,272	30	7.6	1.6	0.05
18-49 y	No updated vax	31,450	413	44.3	5.8	0.59	-	-	-	-	-
	Updated Covid-19 vax, 1-dose	20,128	265	28.4	3.1	0.32	11,322	149	15.9	2.7	0.26
50-64y	No updated vax	28,410	396	155.0	29.9	4.99	-	-	-	-	-
	Updated Covid-19 vax, 1-dose	18,268	255	99.7	16.2	2.80	10,142	142	55.3	13.7	2.19
65+ y	No updated vax	33,390	501	790.0	105.9	40.06	-	-	-	-	-
	Updated Covid-19 vax, 1-dose	21,804	327	515.9	58.1	23.47	11,586	174	274.1	47.7	16.59

Hosp = hospitalizations; ICU = intensive care unit stays

Disaggregated results, per 100,000 people, preliminary estimates

Incremental cost-effectiveness ratios, societal perspective, per 1000 people, preliminary estimates

Age group	Strategy	Projected Costs	Incremental Costs	Projected QALYs	Incremental QALYs	\$/QALY
5-11 y	No updated vax	\$38,124	-	26,788	-	-
	Updated Covid-19 vax, 1-dose	\$188,339	\$150,215	26,789	0.7494	\$200,445
12-17 y	No updated vax	\$45,219	-	24,638	-	-
	Updated Covid-19 vax, 1-dose	\$198,613	\$153,394	24,639	0.7570	\$202,621
18-49 y	No updated vax	\$131,991	-	20,208	-	-
	Updated Covid-19 vax, 1-dose	\$261,080	\$129,089	20,209	0.6083	\$212,225
50-64y	No updated vax	\$237,902	-	12,278	-	-
	Updated Covid-19 vax, 1-dose	\$326,508	\$88,606	12,279	0.7824	\$113,248
65+ y	No updated vax	\$363,304	-	6,525	-	-
	Updated Covid-19 vax, 1-dose	\$403,428	\$40,124	6,527	1.7215	\$23,308

QALY = quality-adjusted life year

Incremental cost-effectiveness ratios, preliminary estimates

Age group	Societal perspective \$/QALY
5-11 y	\$200,445
12-17 y	\$202,621
18-49 y	\$212,225
50-64y	\$113,248
65+ y	\$23,308

QALY = quality-adjusted life year

One way sensitivity analyses, 5-11 y preliminary estimates

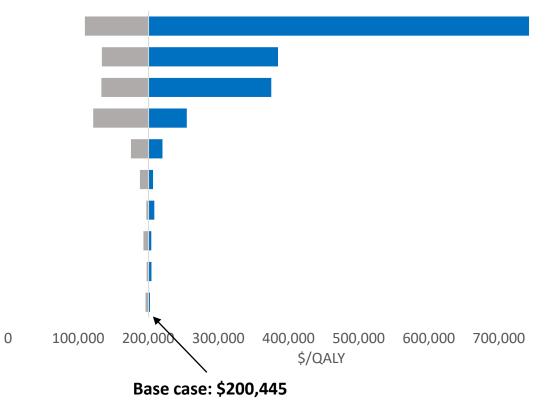
Vaccine impact, symptomatic illnes/hospitalization(0.711, 0.133)

QALYs lost, symptomatic COVID-19 (0.009, 0.003)

Probability, symptomatic COVID-19 (0.451, 0.179)

Cost, vaccine dose (\$30, \$130)

Time (h) spent to receive vaccine (0.170, 2)


Probability, hospitalization given symptomatic COVID-19 (0.00003, 0.00034)

Cost, vaccine administration per dose (\$20.30, \$28.90)

QALYs lost, systemic reaction (0.0001, 0.0004)

Time (h) spend to receive vaccine, pharmacy (0.083, 0.500)

Proportion, patients with productivity loss due to Long COVID (1, 0.250)

Note: Numbers in parentheses indicate input values for sensitivity analysis QALY = quality-adjusted life year

One way sensitivity analyses, 18-49 y preliminary estimates

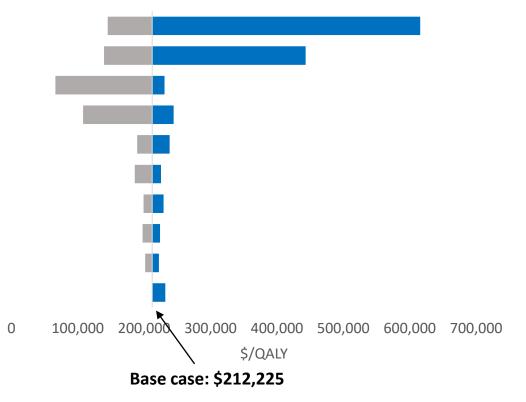
Vaccine impact, symptomatic illness/hospitalization (0.475, 0.140)

QALYs lost, symptomatic COVID-19 (0.007, 0.002)

Cost, vaccine dose (\$30, \$130)

Probability, hospitalization given symptomatic COVID-19 (0.0020, 0.0001)

Probability, symptomatic COVID-19 (0.344, 0.286)


Productivity loss, Long COVID (1, 0.250)

Probability, systemic reaction (0.073, 0.148)

Time (h) spent to receive vaccine (0.170, 2)

Vaccine impact, critical illness/death (0.664, 0.287)

Proportion, patients with productivity loss due to Long COVID (1, 0.250)

Note: Numbers in parentheses indicate input values for sensitivity analysis QALY = quality-adjusted life year

Scenario analysis: probability of symptomatic illness*, ICER (\$/QALY) preliminary estimates

A	D**	Probability of symptomatic illness						
Age group	Base case**	0.1	0.2	0.3	0.4	0.5		
5-11 y	\$200,445	\$722,624	\$331,876	\$211,334	\$152,732	\$118,088		
12-17 y	\$202,621	\$714,398	\$334,103	\$213,584	\$154,431	\$119,286		
18-49 y	\$212,225	\$709,386	\$356,815	\$224,808	\$155,707	\$113,199		
50-64 y	\$113,248	\$264,675	\$162,297	\$106,065	\$70,517	\$46,014		
65+ y	\$23,308	\$48,896	\$36,178	\$26,213	\$18,195	\$11,603		

^{*}One-way sensitivity analysis of non-hospitalized symptomatic illness varied separately from hospitalization and critical illness

ICER = incremental cost-effectiveness ratio; QALY=Quality-adjusted life year

^{**}Base case probability of symptomatic illness: 5-49 y: 0.3145; 50-64 y: 0.2841; 65+ y: 0.3339

Scenario analysis: probability of hospitalization, ICER (\$/QALY) preliminary estimates

Age group	.	Probability of hospitalization**						
	Base case*	¼ base case	½ base case	2x base case	3x base case	4x base case		
5-11 y	\$200,445	\$206,836	\$204,683	\$192,231	\$184,349	\$176,779		
12-17 y	\$202,621	\$210,339	\$207,740	\$192,689	\$183,146	\$173,970		
18-49 y	\$212,225	\$243,483	\$232,548	\$176,831	\$147,052	\$121,649		
50-64 y	\$113,248	\$214,304	\$173,146	\$41,319	Cost saving	Cost saving		
65+ y	\$23,308	\$133,631	\$78,440	Cost saving	Cost saving	Cost saving		

^{*}Base case probability of hospitalization: 5-11 years: 0.000133; 12-17 years: 0.000181; 18-49 years: 0.000443; 50-64 years: 0.001550; 65+ years 0.007900

^{**}Adjusted risk of hospitalization by underlying condition: chronic obstructive pulmonary disease: 0.9, history of stroke: 0.9, coronary artery disease: 1.3, asthma: 1.4, hypertension: 2.8, obesity: 2.9, diabetes: 3.2, chronic kidney disease: 4.0, severe obesity: 4.4. Ko et al 2021. ICER = incremental cost-effectiveness ratio; QALY = Quality-adjusted life year

Scenario analysis: All Long COVID submodel parameters*, ICER (\$/QALY) preliminary estimates

Age group	Base case	Long COVID submodel parameters	
Age group	base case	All low	All high
5-11 y	\$200,445	\$206,021	\$188,365
12- 17 y	\$202,621	\$208,341	\$190,416
18-49 y	\$212,225	\$247,483	\$160,934
50-64 y	\$113,248	\$139,203	\$74,095
65+ y	\$23,308	\$28,118	\$15,148

^{*}Long COVID probabilities, costs, productivity losses and quality adjustments varied simultaneously ICER = incremental cost-effectiveness ratio; QALY = Quality-adjusted life year

Vaccine impact scenario analysis, ICER (\$/QALY), preliminary estimates

	Base case	Scenario 1 All lower bounds	Scenario 2 All upper bounds	
5-11 y	\$200,445	\$780,660	\$108,061	
12- 17 y	\$202,621	\$750,981	\$107,709	
18-49 y	\$212,225	\$672,057	\$138,503	
50-64 y	\$113,248	\$396,767	\$52,024	
65+ y	\$23,308	\$141,215	Cost saving	

QALY = quality-adjusted life year

Scenario analysis: alternative seasonality scenarios, ICER (\$/QALY), preliminary estimates

	Base case	Alternative seasonality scenario #1 winter peak	Alternative seasonality scenario #2 spring peak	
5-11 y	\$200,445	\$229,108	\$226,324	
12- 17 y	\$202,621	\$230,316	\$228,911	
18-49 y	\$212,225	\$264,075	\$296,491	
50-64 y	\$113,248	\$135,556	\$168,275	
65+ y	\$23,308	\$27,392	\$42,660	

ICER = incremental cost-effectiveness ratio; QALY = quality-adjusted life year

Scenario analysis: vaccine dose cost, ICER (\$/QALY), preliminary estimates

Ago group	Base case*	Vaccine dose cost					
Age group	base case	\$30	\$50	\$70	\$90	\$110	\$130
5- 11 y	\$200,445	\$121,596	\$148,284	\$174,971	\$201,659	\$228,347	\$255,035
12- 17 y	\$202,621	\$106,933	\$133,352	\$159,770	\$186,188	\$212,607	\$239,025
18-49 y	\$212,225	\$66,351	\$99,231	\$132,112	\$164,992	\$197,873	\$230,753
50-64 y	\$113,248	Cost saving	\$25,403	\$50,965	\$76,528	\$102,090	\$127,652
65+ y	\$23,308	Cost saving	Cost saving	Cost saving	\$6,618	\$18,236	\$29,854

^{*}Base case vaccine cost: 5-11 y: \$89.09; 12-17 y: \$102.44; 18+ y: \$118.73 ICER = incremental cost-effectiveness ratio; QALY = quality-adjusted life year

Multi-way sensitivity analysis: vaccination-related costs, ICER (\$/QALY) preliminary estimates

Ago group	Base case	Vaccination-related costs*		
Age group	base case	All low	All high	
5-11 y	\$200,445	\$88,225	\$292,895	
12- 17 y	\$202,621	\$79,777	\$271,786	
18-49 y	\$212,225	\$39,518	\$267,101	
50-64 y	\$113,248	Cost saving	\$155,887	
65+ y	\$23,308	Cost saving	\$43,137	

^{*}Vaccination related and adverse event related costs and productivity losses varied simultaneously ICER = incremental cost-effectiveness ratio; QALY = Quality-adjusted life year

Limitations

- Data sources vary in representativeness, generalizability
- Unpublished data used to derive key parameters in the model: vaccine impact, symptomatic illness, probabilities of hospitalization and critical illness
- VE estimates derived from a single season
- Few seasons to date to estimate seasonality
- Model does not include reduced transmission (conservative approach)
- Claims data used to estimate costs includes only supplemental insurance for 65+
- Evidence base for Long COVID is especially scarce, even more so for pediatric age groups
- Rapidly evolving evidence base; as critical illness attributable to COVID-19 illness declines, mild/moderate illness and Long COVID could become primary drivers of cost-effectiveness

Summary - preliminary estimates

- ➤ Vaccination averts morbidity and mortality for all age groups, but with substantial variation in impact by age
- ➤ Adult age groups
 - Phase 3 model projects somewhat less favorable results overall due to declining burden of illness
 - ICERs for 65+ age group [\$23,000/QALY] are robust to changes in parameter inputs across plausible ranges [cost saving \$117,000/QALY]

ICERs for 18-49y [\$212,000/QALY] and 50-64y [\$113,000/QALY] age groups are sensitive to changes in

parameter inputs

Parameter	Age	ICER range (\$/QALY)
Vaccine impact	18-49 y	\$145,000 – \$616,000
	50-64 y	\$68,000 – \$296,000
QOL impact, symptomatic illness	18-49 y	\$140,000 – \$443,000
	50-64 y	\$83,000 – \$178,000
Vaccine dose cost	18-49 y	\$66,000 – \$231,000
vaccine dose cost	50-64 y	cost saving – \$128,000
Risk of hospitalization	18-49 y	\$108,000 - \$244,000
	50-64 y	cost saving — \$211,000

Summary - preliminary estimates (2)

➤ Pediatric age groups

• ICERs for 5-11y [\$200,000/QALY] and 12-17y [\$203,000/QALY] age groups are very sensitive to changes in parameter inputs

Parameter	Age	ICER range (\$/QALY)
Vaccine impact	5 - 11 y	\$110,000 - \$743,000
vaccine impact	12 - 17 y	\$109,000 - \$720,000
QOL impact, symptomatic illness	5 - 11 y	\$134,000 - \$385,000
	12 - 17 y	\$136,000 - \$385,000
Probability, symptomatic illness	5 - 11 y	\$133,000 - \$375,000
	12 - 17 y	\$135,000 - \$377,000
Vaccine dose cost	5 - 11 y	\$107,000 - \$239,000
	12 - 17 y	\$107,000 - \$239,000

- Evidence base for pediatric age groups overall less robust
- Estimated results reflect higher degree of uncertainty compared with adult age groups