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Summary

What is already known on this topic?

Ignoring the impact of suppression due to small counts leads to biased in-
ference.

What is added by this report?

This work describes and compares multiple approaches for analyzing
highly suppressed data from CDC WONDER. R and WinBUGS code are
provided to conduct the analyses.

What are the implications for public health practice?

The use of spatial Bayesian models can yield improved inference from the
analysis of highly suppressed data such as those available on CDC WON-
DER.

Abstract

Introduction
CDC WONDER is a system developed to promote information-
driven  decision  making and provide  access  to  detailed  public
health information to the general public. Although CDC WON-
DER contains a wealth of data, any counts fewer than 10 are sup-
pressed for confidentiality reasons, resulting in left-censored data.
The objective of this analysis was to describe methods for the ana-
lysis of highly censored data.

Methods
A substitution approach was compared with 1) a simple, nonspa-
tial Bayesian model that smooths rates toward their statewide av-
erages and 2) a more complex Bayesian model that accounts for
spatial and between-age sources of dependence. Age group–spe-

cific county-level data on heart disease mortality were used for the
comparisons.

Results
Although the substitution and nonspatial approach provided age-
standardized rate estimates that were more highly correlated with
the true rate estimates, the estimates from the spatial Bayesian
model provided a superior compromise between goodness-of-fit
and model complexity, as measured by the deviance information
criterion. In addition, the spatial Bayesian model provided rate es-
timates with greater precision than the nonspatial approach; in
contrast, the substitution approach did not provide estimates of un-
certainty.

Conclusion
Because of the ability to account for multiple sources of depend-
ence and the flexibility to include covariate information, the use of
spatial  Bayesian models should be considered when analyzing
highly censored data from CDC WONDER.

Introduction
CDC WONDER (Wide-ranging ONline Data for Epidemiologic
Research) is a system developed by the Centers for Disease Con-
trol  and Prevention (CDC) to  promote information-driven de-
cision making by public health practitioners and researchers and
provide access to detailed public health information to the general
public (1). Although CDC WONDER contains a wealth of data, it
has limitations. Per CDC policy (2),  any counts fewer than 10
should be suppressed for confidentiality reasons, resulting in left-
censored data. Because of high rates of suppression, many chron-
ic disease researchers opt to focus their inference in a few highly
populated regions (3) or state- or national-level trends (4), despite
known geographic disparities in many chronic disease outcomes
(5,6). This suppression may also discourage research on disparit-
ies between subsets of the population (eg, race or sex disparities)
to  avoid  reducing  already  small  counts  below  suppression
thresholds. In short, suppression of small counts exacerbates many
issues commonly encountered in the field of small area estimation,
where  the  term “small  area”  refers  to  a  geographic  scale  (eg,
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county,  census  tract)  at  which the  observed data  alone do not
provide reliable inference. Thus, when CDC WONDER data are
used to conduct surveillance, the ability to estimate rates for rural
areas and minority populations — where the chronic disease bur-
den is high (7) — is significantly hindered by data suppression.

To address CDC WONDER’s data suppression issue, Tiwari et al
(8) proposed an algorithm for estimating age-standardized rates in
which suppressed age-specific counts are replaced with estimates
based on the county’s age-specific population size and the state-
wide average rate for that age-group. For example, suppose yik de-
notes the number of deaths from age-bracket k in county i of a
population of size nik and our inferential interest lies in λik, the cor-
responding mortality rate. Tiwari et al (8) proposed replacing the
suppressed yik  <10 with , where si  denotes the
state that county i belongs to and  denotes the state-wide aver-
age rate for age-bracket k in state si such that

 (Equation 1)

Because state-level totals are often 10 or greater, we will assume
from this point forward that  is known and publicly available;
when this is not the case, rates could be smoothed toward an al-
ternative value (eg, national estimates).

Although this approach may yield reasonable estimates,  it  has
drawbacks. First and foremost, estimating the uncertainty in age-
standardized rate estimates is not an exact science when the data
are known (9,10), much less when the data are highly suppressed.
Furthermore, the algorithm is not designed to account for hetero-
geneity  in  demographic  information  such  as  the  racial/ethnic
make-up and socioeconomic status of the counties’ populations.
As a result, inference based on these substituted data may be both
biased (ie, smoothing toward the wrong values) and too precise
(ignoring the uncertainty due to data suppression).

When the goal is to assess geographic disparities in age-standard-
ized rates between regions, overcoming the privacy protections to
obtain trustworthy estimates of the age-specific rates and their
levels of uncertainty is only half the battle. For instance, Fay (11)
followed the work of Fay and Feuer (9) to construct interval estim-
ates for ratios based on F distributions. Tiwari et al (10) modified
this work to yield more efficient interval estimation for rates and
ratios of rates from nonnested regions, work that was later exten-
ded by Tiwari et al (12) for when one subregion is nested within a
larger region (eg, a county nested within a state); Zhu et al (13) ex-
tended these approaches to more accurately account for spatial
autocorrelation. When the age-standardized rates must be estim-
ated from suppressed data, further modifications must be made or

these approaches will fail to adequately account for all sources of
uncertainty, yielding interval estimates that may be too narrow
(14,15).

Rather than develop the statistical theory to accurately account for
substitution-based approaches to overcome CDC WONDER’s pri-
vacy restrictions in variance calculations, we consider the use of
Bayesian statistical models, which rely on data augmentation to
make inference on the suppressed counts. As described by Fridley
and Dixon (14), data augmentation approaches estimate the sup-
pressed counts via multiple imputation (16) while simultaneously
making inference on the parameters of interest — for example, λik
and the effects of potential risk factors. As noted by Zhu et al (13),
Bayesian methods for modeling spatial data (17) can yield im-
proved rate estimates when data are limited while simultaneously
providing a mechanism for estimating uncertainty in rate estim-
ates — uncertainty that can be seamlessly propagated into estim-
ates such as age-standardized rates and rate ratios. That said, a key
drawback of Bayesian methods is their tendency to rely on compu-
tationally burdensome Markov chain Monte Carlo (MCMC) meth-
ods.

The objective of this  analysis  was to illustrate 2 Bayesian ap-
proaches for  estimating county-level  mortality  rates,  by using
heart disease mortality data from 1980 obtained from CDC WON-
DER (18), and to compare these results with those generated by
the approach of Tiwari et al (8). In particular, we used a simple,
nonspatial Bayesian model, which produces estimates similar to
those from Tiwari et al (8), along with a more complex Bayesian
model that accounts for spatial and between-age sources of de-
pendence.

Methods
The study population for this analysis included all residents of the
contiguous United States aged 35 or older during 1980. These data
have multiple advantages. Because these data were collected be-
fore CDC’s suppression guidelines (2) went into effect, the public-
use data are complete and free of suppression. Furthermore, be-
cause  county  definitions  changed  in  several  ways  during  the
1980s, the choice of data from 1980 allowed use of readily avail-
able  shapefiles  from the  US Census  Bureau  for  the  I  =  3,109
counties (or county equivalents) in the contiguous United States.
To replicate the analysis of Tiwari et al (8), the data were separ-
ated into K = 6 groups: those aged 35 to 44, 45 to 54, 55 to 64, 65
to 74, 75 to 84, and 85 or older. Annual counts of heart disease–re-
lated deaths per county per age-group were obtained via CDC
WONDER (18) and were defined as those for which the underly-
ing cause of death was “diseases of the heart” according to the In-
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ternational  Classification  of  Diseases,  Ninth  Revision  (codes
390–398, 402, 404–429). Of the more than 18,000 counts in this
data set, nearly half were fewer than 10.

Statistical model

Recall that yik and nik denote the number of deaths and the popula-
tion size in age group k in county i. To model these data, we con-
sidered 2 approaches: a simple Poisson-gamma model and a mul-
tivariate spatial Bayesian model. Although the former illustrates
how a Bayesian model with weakly informative priors can pro-
duce estimates similar to those obtained directly from the raw data
— but with accurate uncertainty measures — the latter illustrates
how Bayesian models can incorporate complex dependence struc-
tures to produce more reliable estimates. A formal definition of
what constitutes a “reliable” rate and the implications of this defin-
ition are provided in the Web Appendix (https://sites.google.com/
site/harryq/wonder). Because of the complexity of Bayesian mod-
els, the Web Appendix also provides technical details on the meth-
ods described in this article and includes R (19) and WinBUGS
(20) code.

Poisson-gamma model
Following the advice of Brillinger (21), we assumed

 (Equation 2)

for i = 1, . . ., I and k = 1, …, K. Because we wished to fit Equa-
tion 2 using a Bayesian framework, we had to specify a prior dis-
tribution for each λik. A convenient choice was to let

 (Equation 3)

As described in the Web Appendix,  can be interpreted as the
prior  number  of  events  and  as  the  prior  population  size,
thereby providing a mechanism for comparing the informative-
ness of the prior to the amount of information contained in the
data. For example, a prior with  = 1,000 would contain the
same amount of information as the data when nik = 1,000, and the
pos te r io r  mean  would  be  equa l  to  the  average  o f

 ( the  es t imate  f rom  the  pr ior )  and
 (the estimate from the data). Here, we can take an

empirical Bayesian approach by letting  from Equa-
tion 1 and defining the informativeness of the prior to be such that

 6  for  all  states  under  the  restriction  that  the
 parameters respect the age distribution in the

United States. To better accommodate low rates among the young-
er age groups, which produce a preponderance of zero counts, we
modified the prior in Equation 3 based on the suggestion of Ker-
man (22) by letting

 (Equation 4)

This prior specification can be considered relatively noninformat-
ive  because  96 .4%  of  US  count ies  had  more  than

 8  heart  disease–related  deaths  in  1980.  A
more complete discussion of this model is provided in the Web
Appendix.

Multivariate conditional autoregressive model
Although the prior specification in Equation 4 is a convenient
choice,  it  does  not  take  full  advantage  of  the  possibilities  of
Bayesian modeling. In particular, Equation 4 does not account for
spatial  relationships or the relationships between different age
groups. To allow for such structures to be included in the model,
we considered Poisson regression models, where

 (Equation 5)

Here, xik denotes a vector of county-specific covariates with cor-
responding age-specific regression coefficients, βk; for example,
including  state-level  effects  could  help  account  for  important
health policy differences across state lines. For this analysis, we
simply assumed ; that is, a model with age-specific
intercept  parameters.  To  account  for  spatial  and  between-age
sources of dependence, we first followed the approach of Besag et
al (17) and defined , where zik accounts for spatial
structure within each age-group and  denotes an exchangeable
(ie, nonspatial) random effect. More specifically, the conditional
autoregressive (CAR) model of Besag et al (17) imposes spatial
structure by shrinking each zik toward the values in neighboring
counties (ie, counties that share a border), where the strength of
this  shrinkage  is  controlled  by  the  number  of  neighboring
counties.

Although the CAR model is a powerful tool for analyzing spatial
data, it does not account for possible correlation between the mul-
tiple age groups. To account for this, we instead considered a mul-
tivariate  extension  of  the  CAR model:  the  multivariate  CAR
(MCAR) model of Gelfand and Vounatsou (23). As with the CAR
model, the MCAR shrinks estimates toward their neighboring val-
ues; unlike the CAR model, however, the MCAR explicitly mod-
els the between-group correlation in the data and leverages these
correlations to produce more precise age-specific rate estimates.
MCAR models were used recently to model spatially referenced
survival times in cancer data (24), temporal trends in county-level
asthma hospitalization rates (25), temporal trends in heart disease
mortality by race and sex (26), and temporal trends in age-specific
stroke mortality (27), among many other applications. Full details,
including a discussion of the prior distributions used, are provided
in the Web Appendix.
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Bayesian inference
Fitting the models in Equation 4 or Equation 5 while accounting
for the suppression of counts fewer than 10 requires the use of
MCMC algorithms. Because of the reliance on MCMC, inference
from these Bayesian models is based on samples generated from
the posterior  distribution — for  example,   for  l  =  1,  …, L,
where L denotes the number of samples. These samples can then
be used to compute quantities such as the age-standardized mortal-
ity rate:

where πk  denotes  a  prespecified standard age distribution (eg,
based on the 2010 US standard population). To summarize the
posterior distribution, it is common to use the posterior median
and the 95% credible interval (constructed from the 2.5 and 97.5
percentiles of the posterior samples and analogous to classical
95% confidence intervals).

Comparison of approaches

To compare  the  various  estimation  approaches,  we  first  con-
sidered simple correlations between the estimates and the rates ob-
tained from the complete data (as considered by Tiwari et al [8])
and correlations between the age-standardized rates and the age-
specific rates. The goal of these comparisons was not to demon-
strate whether one approach is superior to another but rather to
demonstrate the degree to which the approaches are similar to one
another. In addition, we also compared the 2 Bayesian approaches
by using the deviance information criterion (DIC) (28), which uses
the posterior samples to produce a measure that is a compromise
between model fit (denoted by ) and model complexity, pD. In
particular, pD is often interpreted as the effective number of para-
meters in the model. Additional details on DIC, including a dis-
cussion of its use with censored data, are provided in the Web Ap-
pendix.

Creation of maps

Maps were  created by using the  R statistical  software  (The R
Foundation). Code is available in step 6 of the walkthrough in the
Web Appendix (https://sites.google.com/site/harryq/wonder).

Results
The maps of the age-standardized rates generated from the raw
data (Figure 1A) and the maps generated by the Poisson-gamma
model (Figure 1C) have strong similarities, while artifacts of sub-
stituting state-wide averages for suppressed counts based on the

approach of Tiwari et al (8) lead to elevated estimates in many rur-
al counties in the upper Midwest (Figure 1B). In contrast, the map
of the estimates from the MCAR model (Figure 1D) preserves the
overall trends in the data while producing significantly smoother
rate estimates.

Figure 1. Estimates of age-standardized heart disease mortality rates from
1980. A, Crude age-standardized rates based solely on the data. B, Estimates
obtained by using the approach of Tiwari  et al  (8).  C, Estimated posterior
medians from the Poisson-gamma model. D, Estimated posterior medians
from the multivariate conditional autoregressive model (MCAR). Data source:
Centers for Disease Control and Prevention (18).

The correlation results (Table 1) largely support this assessment.
The Poisson-gamma approach produced age-standardized rate es-
timates that were the most highly correlated with the true rates, al-
though the estimates obtained by using the substitution approach
of Tiwari et al (8) had nearly an identical correlation. These 2 ap-
proaches differed in age-specific rate estimates. In particular, al-
though the  Poisson-gamma approach appeared to  struggle  for
adults aged 35 to 44 — producing estimates that were less correl-
ated with the truth — it outperformed the substitution approach for
all groups aged 55 or older. Figure 2, which displays the age-spe-
cific rate estimates for adults aged 35 to 44 and adults 85 or older,
explains how this occurred. Here, although the approach of Tiwari
et al (8) gave every suppressed county in each state the same rate
(by design), the Poisson-gamma model tended to overestimate rate
estimates for those aged 35 to 44. According to Kerman (22), this
overestimation of rates when counts are very small was to be ex-
pected. Furthermore, unlike the approach of Tiwari et al (8), the
Poisson-gamma model produced full posterior distributions for
each age-specific rate estimate, thereby allowing quantification of
the uncertainty in these estimates. (Figure B.3 in the Web Ap-
pendix illustrates how only 4.5% of estimates for those aged 35 to
44 and 42.8% of all age-specific rate estimates from the Poisson-
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gamma model were deemed reliable.) When estimating rates for
those 85 or older, the Poisson-gamma model permitted heterogen-
eity within states (Figure 2E); the inability to permit such hetero-
geneity is a key weakness of the approach of Tiwari et al (8). Fur-
ther evaluation of the low age-specific correlations is provided in
the Web Appendix (Figures B.1 and B.2).

Figure 2. Comparison of 3 approaches for estimating age-standardized heart
disease mortality rates for 2 age groups (adults aged 35 to 44 and adults
aged ≥85) from 1980. A, Estimates for adults aged 35 to 44 obtained by
using the approach of Tiwari et al (8).  B, Estimated posterior medians for
adults aged 35 to 44 from the Poisson-gamma model. C, Estimated posterior
medians  for  adults  aged  35  to  44  from  the  multivariate  conditional
autoregressive model (MCAR). D, Estimates for adults aged ≥85 obtained by
using the approach of Tiwari et al  (8).  E, Estimated posterior medians for
adults  aged ≥85 from the Poisson-gamma model.  F,  Estimated posterior
medians for adults aged ≥85 from the multivariate conditional autoregressive
model (MCAR). Data source: Centers for Disease Control and Prevention (18).

Looking at the correlation results (Table 1) and the maps in Fig-
ure 1, one may wonder why we bother fitting the complex MCAR
model. The DIC results (Table 2) explain why. Here, the MCAR
model offered a model fit that is similar to the fit of the Poisson-
gamma model (as measured by ) while doing so with far fewer
“effective model parameters” (pD). To understand how this can be,
recall that each λik in Equation 4 had its own independent prior
distribution; that is, the Poisson-gamma model did not shrink the
λik toward each other, producing estimates of the (pD) for older age
groups that approach the full I = 3,109 number of parameters. In
contrast,  the  MCAR  model  explicitly  imposed  dependence
between its model parameters, resulting in estimates of the (pD)
that were nearly 80% less than those from the Poisson-gamma
model (eg, 10,785 vs 2,307). In addition, the estimates produced
by the MCAR model were more precise (Web Appendix), and the
smooth geographic patterns in Figure 1D, Figure 2C, and Figure
2F may provide clearer insight into the underlying trends in heart
disease mortality.

 

 

Discussion
This analysis highlighted some of the benefits of using Bayesian
methods to account for left-censored data like those encountered
in CDC WONDER. Although the Poisson-gamma model is a rel-
atively simple approach, models (such as the MCAR model) that
explicitly account for multivariate spatial dependence structures
can lead to better inference by leveraging other sources of inform-
ation to produce more reliable estimates.

The strengths of the MCAR model described in this analysis ex-
tend beyond modeling censored data to the broader field of small
area estimation. As alluded to in the discussion of Equation 5,
many benefits are associated with using the MCAR model in con-
junction with covariate information when modeling chronic dis-
ease  outcomes.  Combining  covariate  information  with  spatial
structure can produce more reliable estimates of the rates them-
selves, which is beneficial for disease surveillance, while simul-
taneously conducting inference on the potential risk factors that
are included as covariates. When the covariates in the analysis are
themselves spatially structured, it can be unclear if the covariate is
effecting change in the outcome or vice versa, or if an unmeas-
ured spatial confounder is influencing both the covariate and the
outcome. In these settings, including a spatial random effect can
lead to a phenomenon referred to as “spatial confounding” (29)
and increase the standard errors associated with these covariates.
Although the notion of spatial confounding has historically been
considered a drawback of spatial models (29), others have argued
(30) that inference from such models can help protect against type
1 error (ie, incorrectly rejecting the null hypothesis).

Finally, although we analyzed age-specific heart disease mortality
as an illustration, the MCAR model is also well suited for analyz-
ing rarer event data via its ability to jointly model multiple out-
comes. This analysis leveraged information from older age groups
with higher death counts to produce more reliable estimates for
those aged 35 to 44. Similarly, one could jointly model a chronic
disease outcome for multiple race/ethnicities, exploiting the shared
factors that may lead to increased rates for non-Hispanic white
persons and racial/ethnic minorities alike. Alternatively, one could
use MCAR models to simultaneously analyze multiple chronic
disease outcomes with similar etiologies to improve the reliability
of all estimates.

Although the suppression of data creates an obstacle to conduct-
ing chronic disease surveillance, Bayesian statistical methods such
as those described in this analysis can overcome these challenges
while also producing more reliable estimates with valid uncer-
tainty measures. By illustrating the benefits of and providing code
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for their  implementation, we hope to ease the burden of using
Bayesian models and broaden their application to censored data
sets available from sources like CDC WONDER, thereby improv-
ing the inference made from public-use data.
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Tables

Table 1. Comparison of the Correlation Results of 3 Estimation Approaches, Analysis of County-Level Mortality Rates Using Highly Censored Data From CDC WON-
DERa

Approach

Age Group

Age-Standardized35–44 45–54 55–64 65–74 75–84 ≥85

Tiwari et al (8) 0.15 0.73 0.16 0.07 −0.01 0.08 0.73

Poisson-gamma 0.09 0.74 0.23 0.25 0.24 0.27 0.74

Multivariate conditional autoregressive
model

0.15 0.65 0.18 0.15 0.05 0.14 0.65

a Age-standardized correlation results were based on all 3,109 US counties, whereas age-specific correlation results were based only on the suppressed counties
(counties with counts <10). Data source: Centers for Disease Control and Prevention (18).
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Table 2. Comparison of the Deviance Information Criteriona Results of 3 Estimation Approaches, Analysis of County-Level Mortality Rates Using Highly Censored
Data From CDC WONDERb

Approach

Age Group

Overall35–44 45–54 55–64 65–74 75–84 ≥85

Poisson-gamma

DIC 2,204 6,108 12,393 17,866 19,005 16,956 74,533

1,663 5,006 10,509 15,447 16,506 14,616 63,748

pD 542 1,102 1,884 2,419 2,499 2,339 10,785

Multivariate conditional autoregressive model

DIC 1,558 5,242 11,245 16,201 17,417 15,904 67,568

1,478 5,030 10,842 15,743 16,887 15,281 65,260

pD 80 213 403 458 530 624 2,307
a Spiegelhalter et al (28).
b Where  is a measure of model fit (lower is better), pD is a measure of model complexity (lower indicating fewer effective model parameters), and

. Data source: Centers for Disease Control and Prevention (18).
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