Clinical Manifestations and pathophysiology of Long-COVID

Avi Nath

Chief, Section of Infections of the Nervous System National Institute of Neurological Disorders and Stroke, NIH Bethesda, Maryland, USA

Disclosures

None

Attempts at Defining Long-COVID (Diagnostic criteria)

Long-COVID:

Patients

PASC (Post-acute sequelae of COVID-19) National Institutes of Health

Post-COVID-19

World Health Organization

WHO definition of Post-COVID-19

The continuation or development of new symptoms 3 months

after the initial SARS-CoV-2 infection, with these symptoms

lasting for at least 2 months with no other explanation.

PATTERNS OF LONG-COVID

Post-Intensive Care Syndrome

Balcom, et al., Brain 2021

Neurologic Postacute Sequelae of SARS-CoV-2 Infection (Neuro-PASC)

Yair Mina et al. Neurol Neuroimmunol Neuroinflamm 2023;10:e200097

Fig. 2. Kaplan-Meier curves for incidence of mild cognitive disorder in patients with COVID-19 versus patients with upper respiratory tract infection.

Bohelken et al., J Alzheimers Dis Rep 2022

Fc doma

Reactivation of EBV in Long-COVID: Antibody responses to EBV

Klein et al., Nature 2023

Can the virus enter the brain through the olfactory pathways?

Images: McQuaid et al., 2021 DOI: 10.1186/s12987-021-00267-y; Brann et al., 2020 DOI:10.1126/sciadv.abc5801

Images: Meinhardt et al., 2020 DOI:0.1038/s41593-020-00758-5

SARS-CoV-2 infection and persistence in the human body and brain at autopsy

 https://doi.org/10.1038/s41586-022-05542-y
 Sydney R. Stein¹², Sabrina C. Ramelli³, Alison Grazioli⁴, Joon-Yong Chung⁵, Manmeet Singh⁶, Claude Kwe Yinda⁶, Clayton W. Winkler⁷, Junfeng Sun³, James M. Dickey¹², Kris Ylaya⁵, Sung Hee Ko⁶, Andrew P. Platt¹², Peter D. Burbelo⁹, Martha Quezado⁵, Stefania Pittaluga⁵, Sung Hee Ko⁶, Andrew P. Platt¹², Peter D. Burbelo⁹, Martha Quezado⁵, Stefania Pittaluga⁵, Madeleine Purcell¹⁰, Vincent J. Munster⁶, Frida Belinky⁶, Marcos J. Ramos-Benitez^{12,11}, Eli A. Boritz⁶, Izabella A. Lach¹², Daniel L. Herr¹², Joseph Rabin¹³, Kapil K. Saharia¹⁴¹⁵, Ronson J. Madathil¹⁶, Ali Tabatabai¹⁷, Shahabuddin Soherwardi¹⁸, Michael T. McCurdy¹⁷¹⁹, NIH COVID-19 Autopsy Consortium⁴, Karin E. Peterson⁷, Jeffrey I. Cohen²⁰, Emmie de Wit⁶, Kevin M. Vannella¹², Stephen M. Hewitt⁵, David E. Kleine⁵ & Daniel S. Chertow^{12Ξ}

Tissue Category	DOI (days)	Avg. N gene copies/ng RNA (SD)		
	≤14	9,210.10 (43,179.20)		
Respiratory Tract	15-30	19.67 (77.98)		
	≥31	0.65 (2.61)		
	≤14	38.75 (106.08)		
Cardiovascular	15-30	0.59 (3.43)		
	≥31	0.42 (2.51)		
	≤14	30.01 (157.86)		
Lymphoid	15-30	0.35 (1.28)		
	≥31	0.73 (3.83)		
	≤14	24.68 (99.37)		
Gastrointestinal	15-30	0.87 (4.38)		
	≥31	0.24 (2.17)		
	≤14	12.76 (59.01)		
Renal & Endocrine	15-30	0.03 (0.16)		
	≥31	0.04 (0.33)		
	≤14	0.36 (0.58)		
Reproductive	15-30	1.87 (6.72)		
	≥31	0.01 (0.02)		
Muula Maasa Adiasaa	≤14	27.50 (101.13)		
Muscle, Nerve, Adipose,	15-30	50.65 (284.46)		
or skill	≥31	0.54 (3.03)		
	≤14	57.40 (242.40)		
Ocular	15-30	0.07 (0.24)		
	≥31	0.03 (0.12)		
	≤14	32.93 (121.69)		
Central Nervous System	15-30	2.37 (7.34)		
	≥31	0.39 (1.40)		

758 | Nature | Vol 612 | 22/29 December 2022

Research Gate 2021

SARS-CoV-2 in taste papillae

Spike protein: green Nucleocapsid: Red

Yao Q,----Egan JM. NEJM Evidence 2023

Detection of Spike protein in blood of patients with PASC (Long-COVID): Restricted viral replication

Swank et al., CID 2022

Persistent viral infection

Immune dysregulation

JAMA Psychiatry | Original Investigation

Neuroinflammation After COVID-19 With Persistent Depressive and Cognitive Symptoms

Joeffre Braga, BSc; Mariel Lepra, BSc; Stephen J. Kish, PhD; Pablo. M. Rusjan, PhD; Zahra Nasser; Natasha Verhoeff, BHSc; Neil Vasdev, PhD; Michael Bagby, PhD; Isabelle Boileau, PhD; M. Ishrat Husain, MBBS, MD; Nathan Kolla, MD, PhD; Armando Garcia, BSc; Thomas Chao, PhD; Romina Mizrahi, PhD; Khunsa Faiz, MD; Erica L. Vieira, PhD; Jeffrey H. Meyer, MD, PhD

Figure 2. Pearson Correlation Between Translocator Protein Total Distribution Volume (TSPO V_T) in the Dorsal Putamen and Motor Speed

Diffuse microglial cell activation in Long-COVID

Visser et al., Med Rxiv 2022

Fernandez-Castaneda et al., Cell, 2022

Perivascular fibrinogen leakage indicates vascular injury

NY4 midbrain

Microvascular disease

Perivascular activated macrophages

Perivascular activated astrocytes

Very few T cells and confined to the blood vessels Platelets are sticking to endothelial cells and forming clots

Lee et al. Brain 2022

Lee et al., NEJM 2021

Antibody mediated complement dependent microvascular disease Control

COVID-19

Activation of endothelial cells (PECAM-1)

Deposition of complement

Deposition of IgG and IgM

Lee at al., Brain 2022

Increased plasma B cells in Long-COVID

Mina et al., 2023

Loss of Purkinje cells in cerebellum

Control cerebellum

COVID-19

Lee et al., Brain 2022

Neuronal Injury in Brainstem

Post-mortem MRI (11.4T scanner) 100 micron sections

Pre-Botzinger complex

Neuronophagia

Lee et al., NEJM 2021

Ondine's Curse

Post-mortem MRI (11.4T scanner) 100 micron sections

CD68

Pre-Botzinger complex

Neuronophagia

Can SARS-CoV-2 infection accelerate Brain atrophy and Alzheimier's Disease pathology?

Accelerated Article Preview

SARS-CoV-2 is associated with changes in brain structure in UK Biobank

COVID cases: 401 Controls: 384

Douaud et al., 2022

Journal of Alzheimer's Disease 89 (2022) 411–414 DOI 10.3233/JAD-220717 IOS Press

Short Communication

- Reviewed 95 million health records in US
- 6.2 Million >65 yrs with medical encounters 2/2020-5/2021

Association of COVID-19 with New-Onset Alzheimer's Disease

Lindsey Wang^a, Pamela B. Davis^b, Nora D. Volkow^c, Nathan A. Berger^a, David C. Kaelber^d and Rong Xu^e,*

Comparison of 360-day risk for new diagnosis Alzheimer's disease (matched COVID-19 vs non-COVID-19 cohorts)

Population	Matched Cohort (COVID-19)	Matched Cohort (non–COVID–19)				HR (95% CI)
Overall (>=65)	0.68% (2,716/399,916)	0.47% (1,910/403,672)			H	1.69 (1.53-1.72)
65-74	0.20% (416/213,508)	0.13% (359/213,814)			<u>ын</u> ы	1.59 (1.37-1.85)
75-84	0.87% (1,111/127,298)	0.59% (752/128,534)			→ →	1.69 (1.54-1.85)
>=85	2.01% (1,189/59,110)	1.33% (812/61,032)			H-H-I	1.89 (1.73-2.07)
Women	0.80% (1,696/213,138)	0.48% (1,042/215,383)			⊢⊷⊣	1.82 (1.69-1.97)
Men	0.55% (1,020/186,698)	0.42% (785/188,026)			⊢1	1.50 (1.37-1.65)
Black	0.77% (306/39,925)	0.53% (212/40,206)			⊢ ⊷i	1.62 (1.36-1.93)
White	0.70% (2,094/301,366)	0.49% (1,475/303,865)			H=1	1.61 (1.51–1.72)
Hispanic	0.47% (128/27,229)	0.41% (112/27,265)				1.25 (0.97-1.61)
			0 0.5	5 1 Hazar	1 1.5 2	

Hospitalized patients with COVID

TME=toxic metabolic encephalopathy

Fonterra et al., J Alz Dem 2022

MARKERS OF NEURONAL INJURY and ALZHEIMER'S DISEASE

Ziff et al., J Neurochem 2021

Acceleration of Amyloid fibril formation with Spike protein fragment

Spike 1058-68: HGVFLHVTYV

Cao et al., ACS Appl Mater Interfaces 2023

Symptomatic therapy

(assuming that other underlying causes have been excluded)

- Brain fog: Cognitive therapy
- Dysautonomia: Mineralocorticoids, compression stocking, IV fluids
- Sleep disruption: Sleep studies and treat accordingly
- Mood disorders: anxietolytic, anti-depressive agents
- Pain: Gabapentin; Nortryptiline
- Tinnitus: Hearing aids
- Fatigue: Pacing
- Functional disorders

Immunomodulatory therapy (Need Clinical Trials)

- Non-specific immunomodulatory agents
- Corticosteroids
- Intravenous Immunoglobulin
- Plasmapheresis
- Innate immune system
- IL-1, IL-6 and TNF-alpha antagonists
- JAK-STAT inhibitors
- BTX inhibitors
- Reversal of immune exhaustion
- Checkpoint inhibitors

Feb 2023	bmj medicine	Effect of covid-19 vaccination on long covid: systematic						
	Check for updates	review			-	-		
		— Oyungerel Byambasuren ¹ Paulina Stehlik ¹ Justin Clark ¹ , ¹ Kylie Alcorn, ² Paul Glasziou ¹						
	Study or subgroup	Log (odds ratio)	Standard error	Odds ra IV, rand (95%)	atio Iom CI)	Odds ratio IV, random (95% Cl)		
	One dose before in	fection						
	Ioannou 2022 ²³	0.030	0.041	(•		1.03 (0.95 to 1.12)		
	Antonelli 2022 ²⁰	0.030	0.098			1.03 (0.85 to 1.25)		
ntion	Taquet 202127	-0.041	0.039	•		0.96 (0.89 to 1.04)		
	Azzolini 2022 ²²	-0.151	0.719		_	0.86 (0.21 to 3.52)		
	Simon 2021 ³¹	-1.514	0.049	•		0.22 (0.20 to 0.24)		
ation	Two doses before i	nfection						
	van der Maaden 20	22 ²⁸ 0.020	0.093			1.02 (0.85 to 1.22)		
	Taquet 2021 ²⁷	0.000	0.026	•		1.00 (0.95 to 1.05)		
	Ioannou 2022 ²³	-0.249	0.070	-		0.78 (0.68 to 0.89)		
	Mohr 2022 ²⁴	-0.357	0.096	•••		0.70 (0.58 to 0.84)		
	Ayoubkhani 2022 ²¹	-0.528	0.084	•		0.59 (0.50 to 0.70)		
	Tannous 2022 ²⁶	-0.545	0.056	•		0.58 (0.52 to 0.65)		
	Antonelli 2022 ²⁰	-0.673	0.238	-+-		0.51 (0.32 to 0.81)		
	Azzolini 2022 ²²	-1.386	0.650			0.25 (0.07 to 0.89)		
	Three doses before	einfection						
	Azzolini 2022 ²²	-1.833	0.854			0.16 (0.03 to 0.85)		
				Favours vaccine	Favours no vaccine			

Prevention with Vaccination

Clinical Protocols on Neuro-COVID at NIH

- Natural History Study
- Viral Reservoir Study (in development)
- Clinical Trial (placebo vs IVIG)

Conclusions

- Direct invasion of the brain by SARS-CoV-2 is rare and may not explain the neurological complications
- Neuroimmune dysfunction is driven by activation of innate immunity, immune exhaustion and antibody mediated phenomenon
- Clinical trials with immunotherapies could be considered in patients with Long-COVID

Acknowledgements

Marco Hefti (University of Iowa) Rebecca Folkerth (NY medical examiner) Daniel Perl (USUHS) Eliezer Masliah (NIA) Serena Spudich (Yale U)

NINDS, NIH

Myoughwa Lee, Wenxue Li, Dragan Marac (Neuropath)

Yair Mina, Farinaz Safavi, Bryan Smith, Brain Walitt, David Goldstein, Steve Jacobson, Darshan Pandya, Hanalise Huff

Amanda Weibold Ladifatou Fouanta, Anita Jones

Govind Nair, Alan Koretsky, Helen Murray (MRI)

Walter Koroshetz