
By early January 2023, the COVID-19 pandemic 
had caused >6.7 million deaths worldwide (1), 

and severe socioeconomic hardship (2–4), particularly 
for racial minorities (5,6). Children experienced pan-
demic-related school closures that led to substantial 
losses in learning (7–9), elevated rates of child abuse 
(10), lack of access to healthy food (11), and emotional 
harm (12). By the end of March 2020, all kindergarten 
through 12th grade (K–12) public schools in the Unit-
ed States had stopped in-person instruction (13), af-
fecting 55 million students. Schools in 48 US states re-
mained closed through the end of the school year (14). 

In August and September of 2020, a total of 74% of the 
100 largest school districts in the United States started 
the year with remote-only teaching (15). By Novem-
ber 2020, 19% of those districts remained fully remote, 
and 36% had fully resumed in-person learning (15). 
Schools continued to reopen throughout the year.

By September 2021, a large fraction (70%) of US 
adults had been vaccinated with highly effective 
SARS-CoV-2 vaccines (16), including an estimated 
86% of K–12 teachers and school staff (17). Howev-
er, children <12 years of age were still ineligible for 
vaccines (16,18). Because large pockets of the coun-
try were still unvaccinated, COVID-19 continued to 
claim lives, and 100,000 deaths were reported in the 
United States during July–September 2021, including 
246 deaths among children 0–17 years of age (16). At 
the end of October 2021, the United States authorized 
administration of COVID-19 vaccines for children 
5–11 years of age (19). In January 2022, schools re-
turned from winter break amidst a major COVID-19 
wave fueled by the emergence of the highly trans-
missible and immune-evasive Omicron variant (F.P. 
Lyngse, unpub. data, https://doi.org/10.1101/2021.
12.27.21268278), and case counts among students and 
staff reached record numbers despite increasing vac-
cine coverage in the United States (16,20).

Schools across the country adopted diverse re-
opening plans for the 2021–22 school year. Among 
the largest districts, 96% offered some form of in-
person learning (21). Although some schools fully 
returned to prepandemic normal operations without 
COVID-19 interventions, many adopted policies for 
using masks, social distancing, quarantine, or test-
ing requirements to safeguard the return to campus. 
The federal government invested $122 billion to sup-
port safe, in-person instruction through screening, 
improved building ventilation, purchase of personal 
protective equipment, hiring of additional personnel, 
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In response to COVID-19, schools across the United 
States closed in early 2020; many did not fully reopen 
until late 2021. Although regular testing of asymptomatic 
students, teachers, and staff can reduce transmission 
risks, few school systems consistently used proactive 
testing to safeguard return to classrooms. Socioeconomi-
cally diverse public school districts might vary testing lev-
els across campuses to ensure fair, effective use of lim-
ited resources. We describe a test allocation approach 
to reduce overall infections and disparities across school 
districts. Using a model of SARS-CoV-2 transmission in 
schools fit to data from a large metropolitan school dis-
trict in Texas, we reduced incidence between the highest 
and lowest risk schools from a 5.6-fold difference under 
proportional test allocation to 1.8-fold difference under 
our optimized test allocation. This approach provides a 
roadmap to help school districts deploy proactive test-
ing and mitigate risks of future SARS-CoV-2 variants and 
other pathogen threats.
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and other measures (22,23). Within the first 2 months 
of the school year, ≈1.5% of schools closed temporar-
ily in response to COVID-19 outbreaks (21).

Frequent and systematic testing of asymptomatic 
persons has been shown to be a viable and cost-effec-
tive mitigation strategy in communities, universities, 
and schools (24–29). However, tests are costly and 
inaccessible for many school districts in the United 
States; districts with limited testing resources are 
forced to determine how to allocate testing across 
schools to protect their students, staff, and commu-
nities. Some districts have opted to restrict testing to 
symptomatic persons and other districts have appor-
tioned tests according to school enrollment (30,31).

In this study, we propose a strategy for allocat-
ing testing resources across a diverse school dis-
trict in which the frequency of testing depends on 
the school’s enrollment and grade range, recent  
COVID-19 cases reported among students and staff, 
and the estimated prevalence in the surrounding (i.e., 
catchment) community. Coupling derivative-free 
constrained optimization and a detailed agent-based 
simulation of SARS-CoV-2 transmission within and 
between classrooms, we derived an optimal alloca-
tion of tests across a school system that could mini-
mize the maximum risk for cumulative infections on 
any campus over a 10-week period. We applied our 
approach to design a testing strategy for the 11 main 
high schools in the Austin Independent School Dis-
trict (AISD; Austin, Texas, USA), which has 18,500 
enrolled students and 1,500 staff (32).

Methods
To determine an optimal allocation of tests across 
schools we developed a 2-step framework in which 
we first modeled COVID-19 transmission within 
schools for different levels of surveillance testing 
and then used those results as an input to an optimi-
zation model (Appendix, https://wwwnc.cdc.gov/
EID/article/29/3/22-0761-App1.pdf). We first con-
sidered a hypothetical school system with 6 schools 
of 500 students each that differ over 2 parameters: 
community incidence and in-school transmission 
rate. For community incidence, we considered low 
and high scenarios. In the low scenario, the com-
munity had 35 new daily cases/100,000 persons; in 
the high scenario the community had 70 new daily 
cases/100,000 persons. For the transmission rate, we 
considered unmitigated R0 values to be low (1.0), 
moderate (1.5), or high (2.0).

We then modeled 11 high schools in AISD by us-
ing student enrollment based on attendance in early 
January 2021. We considered 2 different in-school 

transmission rate scenarios: an unmitigated trans-
mission rate in all schools of with an R0 of 1.0; and 
transmission rates of each school estimated by fit-
ting a regression model of the number of cases re-
ported in that school against the estimated enroll-
ment (33) (Appendix).

For each school and each scenario, we ran 300 sto-
chastic simulations. We assumed that only students 
(not adult staff) were tested on Monday mornings 
and that test results were available instantly (34); pre-
liminary analysis suggested that testing adults had 
minimal effects. During any given week, students 
in the model were selected for testing evenly across 
classes rather than testing a subset of entire classes.

In addition to proactive testing, we assumed that 
90% of symptomatic persons would seek testing 0.5–
1.5 days after symptom onset and then isolate after 
testing, even before results are available. We assumed 
20% of infected students and 57% of infected adults 
would become symptomatic (35,36).

In our analysis of a hypothetical school system, we 
assumed that tests were perfectly accurate and that a 
positive test immediately triggered a 14-day isolation 
of the person and a 14-day quarantine of household 
and classroom members. For our case study of AISD, 
we assumed lower test accuracy based on estimates 
for the widely used Abbott BinaxNow antigen tests 
(https://www.abbott.com), which had 95% sensitiv-
ity for symptomatic persons, 80% sensitivity for as-
ymptomatic persons, and 99% specificity (37,38).

Transmission Model
We built a stochastic agent-based model of COVID-19 
transmission within schools that included household 
transmission for students. We held the average com-
munity incidence constant through the simulation 
and all persons could become infected through out-
side interactions that were not explicitly modeled. 
The modeled population included students, teach-
ers, staff, bus drivers, and members of the students’ 
households. We modeled various contacts between 
agents in schools (Appendix).

We used published estimates for the average 
SARS-CoV-2 incubation, latent, and infectious peri-
ods, as well as a person’s infectiousness through time 
(39). We assumed that asymptomatic cases were two 
thirds as infectious as symptomatic cases (40).

We simulated contacts at half-hour intervals and 
stochastically determined infection events based on 
the transmission probability between pairs of inter-
acting persons. For each scenario, we derived the 
transmission rate to produce the specified unmiti-
gated in-school R0 (Appendix). This R0 is the basic 
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reproductive rate we would obtain without any test-
ing, symptomatic or surveillance, and reflects other 
mitigation measures in place, such as face masks or 
social distancing.

We ran simulations for 10 weeks. We initiated 
simulations with everyone susceptible and simulated 
community and household infections for 10 days be-
fore school started.

Optimization Model
The objective of our test-allocation problem was to 
minimize the maximum risk experienced by any 
school in the system under consideration. Because 
of the stochastic nature of our COVID-19 transmis-
sion model, we had to choose a measure that summa-
rized the risk for a given school under each possible 
frequency of surveillance testing. We defined the risk 
for each school as the expected number of on-campus 
infections of students plus the 90% conditional value-
at-risk (CVaR) of the number of on-campus infec-
tions. Here, CVaR represents the expected number of 
such infections, conditional on restricting attention to 
the worst 10% of simulated outcomes, and hence ac-
counts for risk aversion. Given 2 candidate allocations 
with a similar average number of cases, we preferred 
the allocation that limited the upside tail risk in terms 
of a large outbreak. We further accounted for risk by 
taking the worst-case risk measure across all schools. 
We used on-campus infections, rather than total  

infections, because total infections are partially driven 
by community incidence rather than school interven-
tions. We further used the proportion of a school’s in-
fected population rather than the absolute number of 
infections, which enabled us to treat large and small 
schools equally. Then, we could calculate each school’s 
risk as a function of the number of tests allocated; more 
tests reduced the risk incurred. Our goal was to allo-
cate tests to schools to minimize the largest risk mea-
sure incurred at any school, subject to the constraints 
that we respect total testing capacity across the school 
system and that we cannot test all students at a school 
more than once per week (Appendix Figure 13).

Results
Under all transmission scenarios, we expected pro-
active testing to greatly reduce the proportion of 
students infected on campus over a 10-week period 
(Figure 1, panel A). In the high-risk scenario (in-
school R0 = 2.0), 14-day testing reduced the fraction 
of students infected from 18.2% to 4.1%; under the 
lowest risk scenario (in-school R0 = 1.0), the expected 
incidence decreased from 4.0% to 1.5%. When we in-
creased testing frequency from every 14 days to every 
7 days, the expected incidence in high-risk scenario 
reduced to 2.1% and expected incidence in low-risk 
scenario reduced to 1.0%.

The efficacy of testing to mitigate in-school trans-
mission depended on whether quarantine was limited 
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Figure 1. Projected effects of a 
COVID-19 test allocation strategy 
to mitigate SARS-CoV-2  
infections across 11 school 
districts in the Austin Independent 
School District, Austin, Texas, 
USA. The whisker plots 
demonstrate projected effects 
over a 10-week period in a 
school with 500 students under 
2 scenarios: A) assuming the 
household and classroom of each 
detected case is quarantined; or 
B) assuming only households 
(not entire classrooms) are 
quarantined. Colors indicate 
reproduction numbers as low 
(1.0), moderate (1.5), and high 
(2.0) in-school transmission risks 
in the absence of proactive or 
symptomatic testing, isolation, 
and quarantine. Whiskers 
indicate points that lie within 
1.5 interquartile ranges of the 
lower and upper quartiles; boxes 
indicate interquartile range and 
horizontal bars indicate median fraction of students infected on-campus depending on the frequency of proactive testing as never (0), or 
once per every 28, 21, 14, or 7 days. Results are based on 300 stochastic simulations for each scenario.
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to the household of the positive case or extended to the 
entire classroom (Figure 1, panel B). Under a moder-
ate transmission scenario (in-school R0 = 1.5) in which 
students are tested every other week, the expected in-
cidence decreased from 6.3% (95% CI 1.0%–15.6%) to 
2.9% (95% CI 1.0%–6.2%) when we added classroom 
quarantine to household quarantine. We also estimated 
the costs of quarantine in terms of days of in-school edu-
cation lost over the 10-week projection period, under the 
moderate transmission risk scenario (Figure 2, panel A; 
Appendix  11). Without proactive testing, we expected 
the strategy of quarantining entire classrooms after a 
positive test to result in an average of 3 (6%) out of 50 
school days missed per student. We expected house-
hold-only quarantine to reduce that cost by roughly 
6.5-fold, to an average 0.9% of school days missed; how-
ever, that strategy roughly doubled the days students 
spent at school while infectious (Figure 2, panel B). 

Regardless of quarantine policy, our model 
showed that proactive testing could reduce in-school 
exposure, with few to no additional lost days of school. 
In addition, we found that shortening the quarantine 
period for classroom contacts from 14 to 7 days would 
mitigate some of the educational losses without sub-
stantially increasing health risks (Appendix Figure 12).

As a sensitivity analysis, we also considered a 
higher rate of SARS-CoV-2 introductions from the 
surrounding community by raising daily new cases 
from 35 cases/100,000 persons to 70 cases/100,000 
persons and lowering the accuracy of SARS-CoV-2 
tests (37,38) (Appendix Figures 10, 11). In our sensi-
tivity analysis, we found that our estimates were ro-
bust to the assumed sensitivity and specificity of the 
tests (Appendix).

Case Study—Optimizing Testing across a  
Large Municipal School District
We applied our model to derive an optimal allocation of 
testing resources across the 11 high schools in AISD, the 
largest district in Austin, Texas, which includes 75,000 
students, 5,500 teachers, and 5,000 staff. The district op-
erates 125 schools from pre-K–12th grade; 55% of stu-
dents are Hispanic and 30% White, and >50% come from 
economically disadvantaged backgrounds (32). We esti-
mated the external force of infection for each school by 
comparing reported COVID-19 incidence in the neigh-
borhood of a school to reported incidence across the 
entire metropolitan statistical area (MSA) from March 
2020–January 2021 (Figure 3, panel A) (41). We listed 
the schools in order of the estimated external risks; the 
catchment of school A had almost double (195%) the 
city-wide incidence, and the catchment of school K had 
only 37%. In general, risk (i.e., COVID-19 incidence) was 
higher on the east side of Austin.

We estimated on-campus transmission risk for 
each school by using reported cases from each school 
during August 16, 2020–March 8, 2021 (Figure 3, panel 
B). In brief, we scaled the in-school R0 based on the dif-
ference between the cumulative, per student incidence 
in a school to the cumulative incidence throughout the 
district. We assumed a baseline R0 of 1.0; thus, schools 
with incidence equal to the district-wide incidence had 
resulting estimates that ranged from 0.70–1.41. Our es-
timates for on-campus transmission risk and external 
force of infection were not greatly correlated (Appen-
dix). We also ran scenarios in which all schools had the 
same transmission risk (Appendix Figures 5, 6).

On the basis of the estimated heterogeneity in 
risks across the district, we estimated the optimal  
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Figure 2. Projected days of 
school missed in a COVID-19 
test allocation strategy to 
mitigate SARS-CoV-2 infections 
across 11 school districts in 
the Austin Independent School 
District, Austin, Texas, USA. 
The graphs demonstrate the 
expected proportion of school 
days missed due to isolation 
or quarantine over a 10-week 
period in a school with 500 
students under 2 scenarios: A) 
assuming the household and 
classroom of each detected 
case is quarantined; or B) 
assuming only households 
(not entire classrooms) are quarantined. Estimates assume a moderate (reproduction number = 1.5) in-school transmission risk in the 
absence of proactive or symptomatic testing, isolation, and quarantine. All projections assume that isolation and quarantine periods 
last 14 days. In addition to on-campus transmission, persons might be exposed in the surrounding community at a rate of 35 new daily 
infections/100,000 population. The results are based on 300 stochastic simulations for each scenario.
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allocation of testing resources across schools by 
searching the space of possible allocations. For a 
given allocation, we projected the outcome for each 
school by first averaging the expected cumulative 
incidence (i.e., the mean across 300 simulations) and 
then the projected tail risk (i.e., the mean across the 
10% worst-outcome simulations). We found the max-
imum value across schools (i.e., the projection for the 
highest-risk school) and then selected the allocation 
that minimized this value. Assuming that the aver-

age community incidence was 70 new daily cases 
per 100,000 population, based on estimates from late 
January 2021 in the Austin area (42), and that the dis-
trict had a total testing budget of 1 test per student 
every 14 days across the district, the optimized al-
location ranged from testing once per 45 days in the 
lowest-risk school (school K) to once per 7 days in 
the highest-risk school (school A) (Figure 4, panel A). 
We assumed that testing could not be administered 
more frequently than weekly. The optimal allocation  
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Figure 3. Locations of 11 high 
schools in the Austin Independent 
School District, Austin, Texas, 
USA, used to model a COVID-19 
test allocation strategy to mitigate 
SARS-CoV-2 infections across 
school districts. A) Daily incidence 
of COVID-19 infections in late 
January 2021 in the catchment 
area of each high school relative 
to the average incidence across 
the Austin Metropolitan Statistical 
Area. Estimates are based on 
COVID-19 case reports during 
March 2020–January 2021. A value 
of one corresponds to the average 
incidence in the MSA. Schools are 
listed A through K from highest 
to lowest estimated daily incidence (Appendix Table 3, https://wwwnc.cdc.gov/EID/article/29/3/22-0761-App1.pdf). B) On-campus 
transmission risks, estimated from reported COVID-19 cases during August 16, 2020–March 8, 2021. Values are scaled so that 1.0 
means that the school reported the expected number of cases, based on a least-squares linear fit of reported cases to school enrollment 
(Appendix Figure 4).

Figure 4. Test allocations and estimated infection rates based on testing frequency in a COVID-19 test allocation strategy to mitigate 
SARS-CoV-2 infections across 11 school districts in the Austin Independent School District, Austin, Texas, USA. A) Testing allocation for 
3 testing strategies. Orange dashed line indicates pro rata strategy; blue bars indicate optimized strategy to minimize the maximum risk; 
diamonds indicate optimized strategy considering only variation in community transmission risks. Numbers to the left of the y-axis indicate 
the assumed on-campus reproduction number for each school. B) The median percent of students infected on-campus under the optimized 
strategy (blue) and pro rata strategy (orange), over a 10-week period; arrows indicate increases or decreases in infection rates. We 
modeled infections rates by using 3 testing strategies: pro rata, in which all schools test their students once per every 14 days; optimized to 
minimize the maximum risk of any school, considering variation in both community and in-school transmission risks; optimized considering 
only variation in community transmission risks. Values are averaged across 300 simulations (Appendix Table 4, https://wwwnc.cdc.gov/EID/
article/29/3/22-0761-App1.pdf). The model assumes that classrooms quarantine for 14 days following a positive test. 
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differed slightly when we assumed instead that 
schools had the same on-campus R0 and differences 
in risk stemmed solely from the community force of 
infection (Figure 4, panel A).

We projected infection rates under both the opti-
mized allocation and a nonoptimized pro rata alloca-
tion in which resources would be allocated propor-
tional to enrollment (Figure 4, panel A). We expected 
the optimized strategy to slightly reduce the overall 
infection rate for the district relative to the pro rata 
strategy and equalize risks across campuses. In the 
optimized strategy, the median infection rate in-
creased by 0.4% for the lowest-risk school (school 
K) and decreased by 1.8% for the highest-risk school 
(school A) (Appendix Table 4).

When we considered total incidence by combin-
ing both community-acquired and school-acquired 
infections, we expected ≈5.8-fold difference between 
the highest risk and lowest risk schools, in the absence 
of testing (Figure 5, panel A). Using a 14-day testing 
budget, we found a pro rata strategy would lower 
overall incidence but not reduce the disparity (Figure 
5, panel B), but an optimized allocation would greatly 
shrink the gap to a 3.6-fold difference (Figure 5, panel 

C). Restricting our analysis to infections that occur on 
campus, the optimized allocation again reduced the 
disparity in risk across schools (Table).

To provide intuition, we also derived an optimal 
testing allocation to reduce risks in a hypothetical 
district containing 6 schools, 1 of each combination 
of either low or high external risk and either low, 
moderate, or high internal risk (Appendix Figures 8, 
9). We compared 3 possible testing scenarios: no test-
ing, universal testing every 2 weeks, and an optimal 
testing strategy in which the 2-week testing budget is 
allocated to schools to minimize the maximum risk 
experienced by any school in the system. We found 
that going from no testing to a pro rata allocation de-
creased the maximum risk for any school from 24.7% 
(95% CI 11.9–38.0) of students infected to 6.6% (95% 
CI 3.0–11.4); under the optimal allocation, risk was 
further reduced to 4.5% (95% CI 1.4–8.3). Using this 
strategy, the total expected risk across all 6 schools 
was reduced from 12.8% (95% CI 9.0–16.9) of infec-
tions without testing to 3.8% (95% CI 2.5–5.2) with 
a pro rata allocation, which was further reduced to 
3.5% (95% CI 2.4–4.8) under the optimal testing allo-
cation (Appendix Figure 14, panel B).
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Figure 5. Cumulative infections in 
schools used to model a COVID-19 
test allocation strategy to mitigate 
SARS-CoV-2 infections across 
11 school districts in the Austin 
Independent School District, Austin, 
Texas, USA. Graphs represent 
cumulative COVID-19 infections 
over a 10-week period under 3 
testing scenarios: A) no testing; B) all 
schools test students every 14 days; 
and C) optimized allocation of tests 
based on school-specific transmission 
risks, assuming a district-wide budget 
of 1 test per student every 14 days. 
Schools are ordered from A–K based 
on community incidence from high 
to low in the school catchment area. 
Graphs show 7-day moving averages 
based on a single simulation for 
each scenario and school. To show 
representative projections, we 
selected the simulation that produced 
a cumulative attack rate closest to the 
median across all 300 simulations.
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Discussion
Proactive testing can be an effective strategy for 
preventing SARS-CoV-2 transmission on school 
campuses, if test turnaround is short and positive 
cases are immediately isolated (44; A. Bilinski, un-
pub. data, https://doi.org/10.1101/2021.05.12.2125
7131).Because testing requires considerable time, re-
sources, and personnel, schools might opt to stream-
line their efforts as COVID-19 risks change. Our 
study provides a framework to help school districts 
allocate limited testing resources across different 
schools, depending on the in-school and local com-
munity transmission risks, while weighing the costs 
and benefits of classroom quarantine after a positive 
test. Prioritizing testing based on estimated risks can 
help mitigate the disproportionate COVID-19 bur-
den falling on lower socioeconomic and racial mi-
nority neighborhoods (45–47).

Our results suggest that the optimal allocation 
of tests across schools depends on both the in-school 
transmission rate and the force of infection from 
the surrounding community. However, estimating 
in-school risks is difficult without sufficient testing 
because of overdispersion in the distribution of sec-
ondary cases and the small proportion of children 
that develop symptoms upon SARS-CoV-2 infection 
(48). A modest level of baseline surveillance test-
ing could help determine the relative risks across 
schools (49). Our case study of AISD high schools 
suggests that even without such information, allo-
cating testing resources based on community risks 
alone could substantially close gaps among schools 
(Appendix Figure 7).

Although proactive testing can lower and equal-
ize COVID-19 risks across a heterogeneous school  

district, disparities are likely to persist. Schools draw-
ing from neighborhoods with high COVID-19 inci-
dence will continue to experience higher case counts 
and absenteeism. Other intervention measures, in-
cluding vaccination and use of face masks, are essen-
tial for further reducing risks and ensuring equitable 
access to education.

The optimal allocation of scarce resources across 
multiple entities, like the number of tests per school, 
depends on the state of the entire system. A school 
might receive anywhere from no tests to enough tests 
for weekly testing of every student, depending on the 
level of risk relative to other schools. Schools could 
potentially game the system to gain larger allocations. 
For example, a school could inflate reported cases or 
enable higher rates of transmission by allowing high- 
risk activities or relaxing precautionary measures. If 
such issues arose, then allocation calculations could 
be based solely on estimates for the force of infection 
from the surrounding communities.

This approach can be broadly applied to distrib-
uting limited SARS-CoV-2 testing resources across 
systems with heterogeneous risks, such as work-
places, correctional facilities, or long-term care facili-
ties. Our case study demonstrates that, even within 
a single city, tailoring control strategies to hyperlo-
cal estimates of risks can reduce transmission overall 
and mitigate chronic disparities in access to resourc-
es and disease burden. On larger geographic scales, 
spatiotemporal variation in COVID-19 risks has been 
even more apparent, and cities, states, and countries 
exhibit highly asynchronous waves of transmission. 
Dynamic allocation of scarce public health resources 
based on reliable estimates of risk could substantially 
reduce the burden of COVID-19 and future pathogen 
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Table. Estimated heterogeneity in COVID-19 incidence and total disease burden across 11 high schools in the Austin Independent 
School District, Austin, Texas, USA, under 3 testing scenarios in a modeled COVID-19 test allocation strategy to mitigate SARS-CoV-2 
infections across school districts* 

Infections 
Testing allocation 

No testing Pro rata testing Optimal testing 
Total infections†    
 Risk gap 5.8 4.8 3.6 
 Gini coefficient (SE)‡ 0.23 (0.053) 0.26 (0.057) 0.19 (0.037) 
 No. infections (95% CI)§ 115 (79–158) 70 (50–94) 69 (49–93) 
 Infection rate (95% CI)§ 9.4 (6.5–12.9) 5.7 (4.1–7.7) 5.6 (4–7.6) 
On-campus infections#    
 Risk gap 6.5 5.6 1.8 
 Gini coefficient (SE)‡ 0.27 (0.098) 0.23 (0.075) 0.13 (0.041) 
 No. infections (95% CI)§ 70 (38–119) 27 (13–49) 26 (12–48) 
 Infection rate (95% CI)§ 5.8 (3.1–9.7) 2.2 (1.1–4.1) 2.1 (1.0–3.9) 
*The risk gap is the ratio of the median cumulative incidence across 300 simulations of the school with the highest expected incidence to that of the 
school with the lowest expected incidence.  
†Total student infections, occurring both on and off campus, over the 10-week projection period.  
‡Gini coefficients indicate overall disparities in expected burden, where values of 0 correspond to maximum equality and values of 1 correspond to 
maximum inequality (43). Gini coefficients were calculated using the median proportion of students infected across 300 simulations. 
§The total median infections in the district over the horizon simulated, expressed as absolute and per capita. 
#Infections occurring on campus, over the 10-week projection period.  
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threats across the United States but requires consider-
able coordination at the state and federal level.

The first limitation of our study is that we assumed 
immediate in-school and community risks could be re-
liably estimated. In practice, the data required to esti-
mate such risks often lag, are biased, or are unavail-
able. Such uncertainty could be included in our model 
by using stochastic variables that evolve based on test 
results from each school. However, the additional 
complexity would slow computational optimization. 
Second, we estimated heterogeneity in incidence but 
did not explicitly consider vaccination, health out-
comes other than incidence, or socioeconomic or other 
factors known to correlate with COVID-19 risks (50). 
Schools drawing from more vulnerable communities 
might have access to fewer mitigation resources be-
sides testing, lower vaccination coverage, or higher in-
fection hospitalization and mortality rates. Such factors 
could be explicitly modeled and incorporated into the 
objective function used to derive equitable allocations. 
Third, the study derived allocations to minimize infec-
tions occurring across a school district. However, other 
outcomes could be explicitly incorporated into further 
analyses, including absenteeism and loss of education 
resulting from isolation and quarantine. The costs and 
benefits of quarantining entire classrooms, in addi-
tion to the households of positive cases, depend on the 
frequency of testing. Classroom quarantine would al-
ways be expected to elevate absenteeism but only sub-
stantially reduces exposure risks when testing is infre-
quent. With frequent testing or low transmission risks, 
limiting the scope and duration of quarantine might be 
advisable. Hospitalization risks for school staff and the 
potential for schools to exacerbate transmission in the 
surrounding community also could be integrated into 
allocation calculations. Finally, our model does not 
consider the potential costs or logistical impediments 
to dynamically allocating tests among schools. In ad-
dition to the challenges of rapidly calculating alloca-
tions and distributing tests accordingly, schools might 
require additional trained staff to administer tests, 
conduct contact tracing, and ensure the quick and safe 
isolation and quarantine of affected persons (30).

In conclusion, as the United States plans for  
COVID-19 postpandemic management, proactive 
testing will remain a highly effective countermeasure 
that can be tailored to changing risks on a local scale. 
As tests become more economical and as surveil-
lance within schools and communities improves, our 
model demonstrates that school systems can optimize 
testing and quarantine policies to prevent transmis-
sion, limit absenteeism, and ensure continuity of op-
erations during future COVID-19 surges.
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Mitigate SARS-CoV-2 Infections across 

School Districts 
Appendix 

1. Transmission Model 

We developed an agent-based model of COVID-19 transmission in schools, where we 

explicitly model interactions between students and adults working in the school environment 

during school days. We also include students’ households in our simulation while broader 

community interactions are modeled through random daily introductions of new cases. In our 

hypothetical examples we consider schools with 500 students spread across 25 classrooms, with 

25 teachers, 25 bus drivers, and 16 other school staff. The entire framework, both the 

transmission and the optimization models, were implemented in Python version 3.8.8 (Python 

Software Foundation, https://www.python.org). 

1.1. Contact Structure 

On weekdays students go to school and we explicitly model contacts from 7:30 AM to 

3:30 PM, with contacts modeled to reflect COVID-19 precautions to limit mixing across 

classrooms. We model contacts in half-hour intervals in three different school contexts: (i) 

students commuting to and from school on the bus, (ii) classrooms, and (iii) breaks with school-

wide interactions (Appendix Table 1). We did not include more elaborate contact patterns that 

have been analyzed in other studies (1; A. Bilinski, unpub. Data, 

https://doi.org/10.1101/2021.05.12.21257131).  

We assumed that adults working at schools can be infected by students, but not by other 

adults. Given the relatively small number of adults working in schools and their presumed higher 

levels of compliance with precautionary measures, incorporating adult-to-adult transmission 

would only slightly increase the transmission rate. 

https://doi.org/10.3201/eid2903.220761
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Classroom 

Each classroom is composed of 20 students and a single teacher. Students and teachers 

are assigned to a classroom at the beginning of the simulation and remain in the same room 

throughout the simulation. Therefore, each student interacts with 19 other students, as well as the 

same teacher, while in the classroom. Students spend 6 hours a day in the classroom. 

Bus 

All students commute to and from school by taking a bus. Each bus transports the same 

20 students throughout the simulation and is driven by the same driver, and students are 

randomly assigned to a bus, independently of the classroom to which they belong. Therefore, 

each student interacts with 19 other students as well as the same driver while on the bus. 

Students spend 1 hour on the bus each day, half an hour at the beginning and at the end of the 

day. 

Break 

During the noon break students interact with other students throughout the school in 

cliques of 10 students; in addition, each student interacts with two adults randomly selected from 

the teachers and staff. The cliques of students, as well the two adults each student interacts with, 

are randomly determined independently of classrooms and buses, and remain constant 

throughout the simulation. Therefore, each student interacts with 9 other students as well as two 

adults while on break. Students spend 1 hour on break each day (Appendix Table 1). 

Outside of school, students interact with the adults in their households. The number of 

adults in each student’s household is determined according to data collected by the US Census 

Bureau regarding living arrangements of children under age 18 (2). For simplicity, we do not 

explicitly model siblings within households who attend the same school. Household transmission 

between such siblings can amplify school-based outbreaks if siblings who are infected at home 

return to school while infectious. However, the household attack rate of 16.6% (3), and the 

limited number of sibling pairs in different classrooms (4), would make such occurrences 

relatively small. In addition, the baseline quarantine strategy of quarantining an entire 

individual’s household upon a positive test would prevent some of those sibling infections from 

spreading further in school. 
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Rather than explicitly modeling contacts within households, we use a published estimate 

of the household attack rate of COVID-19 and assumed infected individuals, whether adults or 

children, symptomatic or not, transmit the disease to 16.6% of their susceptible household (3). 

The exact time of infection is determined randomly based on the relative infectiousness of an 

individual through time (details below). 

All interactions with the broader community are abstracted and included through a single 

daily community incidence value that is kept constant throughout the simulation. We determined 

the number of new infections due to community interactions through a binomial process. For 

instance, if we denote the daily community incidence of COVID-19 by p, e.g., p = 70 new daily 

cases per 100,000 population, then the number of newly infected individuals in a group with N 

individuals is sampled from a binomial distribution as Binomial(N,p). 

To account for time spent in school, the daily incidence of new cases among members of 

the school environment on weekdays is half that of the community, but incidence is the same on 

weekends. 

1.2. COVID-19 Natural History 

The natural history of COVID-19 is modeled according to the diagram shown in 

Appendix Figure 1. Infected individuals move to the exposed compartment (E) before 

progressing to either a presymptomatic (PY) or pre-asymptomatic (PA) compartment, from 

which they then move to the symptomatic infectious (IY) and asymptomatic infectious (IA) 

compartments, respectively. From there all infected individuals recover (R) and become immune 

to the disease. The transition times from one compartment to another are determined at the time 

of infection and follow the probability distributions listed in Appendix Table 2. 

The infectiousness of all individuals varies through time, and given the average sojourn 

times in each compartment, the infectiousness profile follows a gamma distribution with shape 

and scale parameters of 2.0 and 1.55, shifted left by 2.3 days. The resulting profile is shown in 

blue in Appendix Figure 2, and based on the time of its maximum value (mode) this results in 

peak infectiousness of ≈0.7 day before symptom onset, with 45% of total infectiousness for an 

individual occurring in the pre-(a)symptomatic compartment, following the results from He et al. 

(5). The curve is normalized so the average infectiousness is 1.0. 
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As the time spent in each compartment by different individuals is randomly sampled 

from the probability distributions listed in Appendix Table 2, the infectiousness profile in blue in 

Appendix Figure 2 is adjusted for the specific time spent by an individual in the pre-

(a)symptomatic and (a)symptomatic compartments using the standard times of symptom onset 

(or transition to infectious asymptomatic compartment), start of infectiousness (transition of pre-

(a)symptomatic compartment), and recovery as the control points. For instance, individual 1 

shown in green in Appendix Figure 2 spends less time in the pre-symptomatic compartment than 

average so the green curve before time 0 has the same shape as the blue one, but is compacted 

from 2.3 days to 1.8 days. Then individual 1 spends more time in the symptomatic compartment 

than average, so the green curve after time 0 has the same shape as the blue curve, but it is 

stretched to 10 days. 

In addition, individuals who remain asymptomatic are assumed to be two-thirds as 

infectious as symptomatic persons at any given point (6), with 20% of children and 57% of 

adults becoming symptomatic (7,8). 

1.3. Infection Events Modeling 

When an infected individual indexed by j interacts with a susceptible individual indexed 

by k at time t in school for one time step of half an hour, the probability that j infects k is given 

by: 

   

where ωj = 1.0 if individual j is symptomatic or pre-symptomatic and ωj = 2/3 if individual j is 

asymptomatic or pre-asymptomatic; here, ij(t) represents the relative infectiousness of individual 

j at time t as shown in Appendix Figure 2, and β is an input parameter that is selected so that the 

unmitigated reproduction number R0 of children in school is equal to a chosen input. It represents 

the probability that a symptomatic individual with relative infectiousness of 1.0 at time t infects a 

susceptible contact in a half-hour interval. 

We use the following to determine β: 

dI = dP + dS the total infectious period in days, which is the sum of the pre-

(a)symptomatic and (a)symptomatic periods 

τ proportion of symptomatic students 
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hx, Cx the number of hours spent in school context x (of the 3 contexts detailed above) 

and the number of contacts in that context 

ωɑ = 2/3, ωs = 1 scaling factor of the relative infectiousness of asymptomatic and 

symptomatic individuals through their infection Δt = 1/2-hour single time step duration in the 

simulations 

We can calculate the desired R0 in school as the sum of R0 in the three different school 

contexts: R0 = R0(class) + R0(bus) + R0(break). 

The basic reproduction number in a given place is simply the probability of infecting a 

given contact multiplied by the number of contacts: R0(x) = Cx ∙ p(x), where p(x) represents the 

probability of infecting a single individual contact in context x over the individual’s entire 

infectious period. Then: 

R0 = p(class) ∙ Cclass + p(bus) ∙ Cbus + p(break) ∙ Cbreak 

R0 = p(class) ∙ [Cclass + 1
ℎ𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

(Cbus ∙ hbus + Cbreak ∙ hbreak)] 

where we make the simplification that the probability of infecting an individual is directly 

proportional to the total time spent in contact with them. 

We now only need to calculate the probability of infecting an individual who is a 

classroom contact, p(class). This probability is averaged over symptomatic and asymptomatic 

individuals. To simplify calculations, we calculated the probability that a symptomatic individual 

would infect another person in their classroom, p(class), with subscript s to denote symptomatic, 

which is given by: 

ps(class) ∙ [τ + ωs + (1 – τ) ∙ ωɑ)] = p(class). 

We can then write the relationship between the probability of a symptomatic infectious 

individual infecting a contact at some point in time, with the probability of infection at each time 

step in the simulation via: 
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By definition, for a symptomatic individual we have qt = β ∙ ij(t), which depends on t 

through the individual’s relative infectiousness. We simplify this by qt = β using the fact that ij(t) 

is constructed to have an average value of 1. As a result, we have the following: 

 

where N represents the average number of time steps that an infected individual has with other 

contacts in their classroom while infectious:  

  

and we use 5/7 to represent the fact that school days occur on weekdays only. 

Finally, we obtain  

 . 

1.4. Testing and Isolation 

In all scenarios, we assumed that 90% of symptomatic individuals will seek testing once 

symptoms occur. The exact time after symptom onset at which individuals seek testing is random 

and is sampled from a triangular distribution with an average of 1 day, a lower bound of 0.5 day, 

and an upper bound of 1.5 day. We assume that the tests that symptomatic individuals use are 

perfect, and separate from the surveillance testing budget. In addition, 2 hours after getting 

tested, the symptomatic individual starts their isolation, and if applicable their contacts 

quarantine themselves at the same time. For surveillance testing the results are assumed to be 

instantaneous. The infected individual then starts their isolation immediately, and their contacts 

quarantine themselves immediately as well. In the baseline scenarios all isolations and 

quarantines last 14 days, according to the Austin Independent School District (AISD) policy 

during the 2020–2021 school year (9). 

In our simulation, surveillance tests are all done on Mondays at 8 AM, right after students 

take the bus to school and before the first class. If students are isolated or quarantined for 2 

weeks, they come back to school on the second Monday after testing positive. 

In addition, surveillance tests are allocated across classrooms every week. For instance, if 

50% of a school’s students are tested every week, then 50% of the students in each classroom are 
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tested each week, according to a defined schedule so that every student will be tested every other 

week. This method of test allocation within a school performed better in our experiments than 

randomly selecting the students for testing, or testing entire classrooms some weeks while no 

student is tested in other classrooms. 

We assumed that individuals strictly quarantine themselves, so that they cannot be 

infected with contacts from the broader community. However, in this case, students could still be 

infected by one of their household members. 

In our base-case scenario, we assumed that surveillance tests were perfect, but we ran 

some sensitivity analysis relaxing this assumption. We ran some scenarios where the tests had a 

sensitivity of 95% for symptomatic individuals, 80% for pre-(a)symptomatic and asymptomatic 

individuals, and a 99% specificity, which corresponds to pre-Delta estimates published for the 

Abbott BinaxNOW tests (10,11). Parameters are provided in Appendix Table 2. 

2. Optimization Model 

We optimize the allocation of tests across a set of schools to minimize a chosen risk 

metric. The results shown in the main text seek to minimize the maximum risk across schools 

and the associated model is presented in the following section. We have explored other objective 

functions, and we show the corresponding model formulations in this section as well as the 

resulting allocations as a sensitivity analysis further below. 

As part of our optimization model formulation, we use the preprocessed results from the 

simulation model above as inputs, so the optimization part of the framework is run independently 

and subsequently to the disease transmission model. 

2.1. Notation 

Set and indices: s ∈ S set of schools in the system. 

Parameters: Ns number of students in school s; B testing budget, expressed as the 

proportion of students in the entire system that can be tested weekly. 

Variables: ts proportion of students tested each week in school s; Is(ts) proportion of 

students in school s infected on-campus over the horizon under testing regime ts. 
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The decision variable ts represents the testing regimen in a school and is expressed as the 

proportion of the school’s students tested each week. For example, ts = 50% means that every 

week 50% of the school’s students are screened so that, on average, students get tested every 

other week, while with ts = 33% students are tested every 3 weeks on average. Evaluating Is(ts) 

requires running the simulation model of disease transmission that we sketch above for 300 

simulations, given a specific value of ts. 

2.2. Model 

The objective of the optimization model is to minimize the maximum risk experienced by 

any school in the system subject to two constraints. 

First, we cannot allocate more tests than are available in the budget: 

 

Second, we limit testing to a weekly frequency in each school: 

 

The risk metric we aim to minimize is the average of (i) the on-campus expected 

infection rate across simulations Ε{Is(ts)}, and (ii) the conditional value-at-risk (CVaR) of the 

infection rate at a level β = 90%, CVɑR90{Is(ts)}. Therefore, the risk for school s given a testing 

regimen ts is  

. 

CVaR, also called expected shortfall, is a widely used risk measure in stochastic 

optimization, thanks to its coherence properties, ease of interpretation, and computational 

tractability (13,14). Consider a random variable, X, that we would like to keep “small,” such as 

the proportion of a population that is infected with COVID-19. CVaR is the conditional 

expectation given that X exceeds its β-level quantile. Thus, in our case, with β = 0.90, 

CVɑR90{Is(ts)} computes the conditional expectation of the worst 10% of the outcomes, or the 

average proportion of infected students at a school, when restricting that average to the 30 

simulated scenarios out of 300 with the largest proportion of infections. Hence, including this 

term helps determine a test-allocation strategy that controls tail risk. Formally, for a random 
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variable X with cumulative distribution function F(x), value-at-risk (VaR) and CVaR are defined 

as follows: 

 
. 

Then the optimization problem can be expressed as the following: 

 

Put together and reformulated, this gives us the following optimization model, where the 
decision variables are the various amounts of testing ts in each school: 

 

Due to the nonlinear, and effectively black-box, nature of the functions Is(ts) with respect 

to ts and the fact that we summarize the risk of each school using the infection rate’s expected 

value and CVaR, this is a nonlinear black-box continuous optimization problem that can be 

solved with standard solvers. We used the COBYLA method implemented in SciPy/Python to 

solve the problem (15,16). 

Our optimization model is nonlinear and nonconvex but has two key properties that allow 

us to readily check whether a solution is globally optimal. First, the risk function associated with 

each school 

 

is a decreasing function of the allocation ts. Second, we are solving a continuous minimax 

problem in which we are focused on the school with the worst-case risk. Thus, we can first 

allocate resources to the worst-case school to decrease its risk to that of the school with the 

second-highest risk, and repeat this scheme until the budget is exhausted, dealing with obvious 

edge cases. This allows us to verify that the solution found via COBYLA is indeed a globally 

optimal solution. 
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Testing cannot be more frequent than weekly, i.e., ts<1. When solving problem (P), we 

may observe that some schools, indexed by say, s ∈ S′, are allocated enough tests for weekly 

testing. To help reduce the dimension and aid the solver in its search, we can fix the 

corresponding decision variables of the schools with weekly testing ts, s ∈ S′, to 1, and rerun 

COBYLA to optimize the allocation for the remaining schools, excluding those schools from the 

first constraint in (P). The problem then becomes the following: 

 

After sketching two alternative formulations, we describe another means by which we 

help the optimization algorithm in terms of preprocessing output from the simulation model. 

2.3. Alternative Objective Functions 

Below we show the optimization model when minimizing different objective functions. 

In Appendix Figure 15, we show the resulting optimal allocations from solving those problems 

for the hypothetical school system. 

Varying CVaR Level and Relative Weight 

Two straightforward modifications to the original optimization problem are to change the 

level ꞵ of CVaR as well as the respective weights of CVaR and of the expectation in the risk 

level of each school. The problem is easily modified, using some value, w ∈ [0,1] for the weight 

of CVaR, we have the following: 

 

By setting w to 0 or 1 we can focus either on the expected infection rate or on the CVaR 

of infection rates respectively, thus ignoring tail risk entirely or focusing solely on it. 



 

Page 11 of 38 

Total Expectation 

A different approach is to try to minimize total infections occurring across the entire 

system rather than trying to minimize the risk for the highest-risk school, as in the main text. 

Then the size of different schools, through the number of students Ns, directly impacts the 

objective function. The problem is formulated as follows: 

 

2.4. Inputs Preprocessing 

To run the optimization model, we need to preprocess the results from the transmission 

model to smooth out some of the stochasticity of the simulations. We do this in two steps. 

First, we take the results from the 300 simulations for a single parameter set, which 

corresponds to a specific school with a certain testing frequency, and we fit a gamma distribution 

to the proportion of students infected on-campus (Appendix Figure 3, panel A). This ensures that 

the risk metrics we calculate are not biased by single simulations and that the CVaR metric stays 

continuous with respect to the exact level β chosen. 

Second, using those fitted gamma distributions, we calculate the risk for all schools for 

each of the 21 testing amounts simulated, from no students tested to all students tested weekly, in 

5% increments. This produces the blue dots in Appendix Figure 3, panel B. We then fit a non-

increasing curve to these dots, specifically we fit a cubic curve up to the point where 75% of 

students are tested weekly and then a linear curve. This piecewise definition of the curve helps us 

keep the number of parameters necessary for fitting low enough to have a parsimonious model 

while having a good fit. 

This process ensures that the risk level of a school decreases as the testing frequency 

increases, which might not always be the case in our simulations due to stochasticity, especially 

when the number of infections is already low. Additionally, explicitly pre-calculating the risk 

level of a school as a function of the testing frequency ensures rapid execution of the 

optimization routine because the COBYLA algorithm might require a large number of iterations 

when the risk level of each school must be evaluated. 
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3. AISD Details 

The list of high schools from the Austin Independent School District (AISD) included in 

our analysis is given in Appendix Table 3 along with the number of students modeled in our 

simulations (17). The number of students in each school is based on enrollment reports from the 

Texas Education Agency (TEA) multiplied by the reported in-person attendance of 6% in AISD 

high schools at the beginning of January 2021 (18,19). We rounded the numbers of students to 

get classes of 20 students and calculated the number of adults working in the school by scaling 

the numbers given in Appendix Table 2 to the numbers of students in each high school. 

Figure 3 panels A, B in the main text show the catchment area of each of the 11 high 

schools along with the relative community incidence in each of those schools, as well as the 

basic reproductive number (R0) assigned to each of those schools for the part of the analysis 

where R0 varies across campuses. The methodology used to determine the community incidence 

of each school catchment area is detailed in the next section. 

To analyze the impact of schools having different transmission rates we assigned each 

school an R0 value, but those values are rough approximations based on limited data and do not 

necessarily represent what actually happened in the schools during the academic year 2020–

2021. 

To assign R0 to each school, we used the reported COVID-19 cases in each AISD school 

from the district’s public dashboard on March 8, 2021 (20), as well as the total enrollment and 

staff data per school used by TEA for allocation of tests in the context of the K–12 COVID-19 

testing project (21). 

We then regressed the number of reported cases 𝑦𝑦 on the total school population 𝑥𝑥 and 

obtained a best fit line of the form: y = y0 + α ∙ x = 5.82 + 0.0095 ∙ x with R2 = 0.44, as shown in 

Appendix Figure 4. 

We then assigned an R0 in each school proportional to the square root of the ratio of 

reported cases yi to predicted cases: 
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with a base value of R0 = 1. For a school that reported yi cases with a total population xi 

we assigned the following: 

.  

The values assigned to each school are listed in Appendix Table 3. 

3.1. COVID-19 Incidence in School Catchment Areas  

To calculate the relative community incidence of COVID-19 cases for each school we 

combine catchment area information from AISD and COVID-19 burden data in the Austin 

metropolitan statistical area (MSA). 

We first obtain the cumulative COVID-19 hospitalization rate, hj, per 100,000 persons for 

each postal code j in the Austin MSA from March 2020–January 11, 2021 (22); then, we 

calculate the average hospitalization rate in the metropolitan area, hMSA. From there we computed 

the relative burden experienced by each postal code j as follows: 

. 

Next, we estimated the proportion of students in each school i coming from postal code j 

(pij) by using the proportion of school i’s catchment area located in postal code j as a proxy. To 

do so, we use GIS data from AISD and Austin MSA (23,24). 

We denote by Ai the area of the catchment area of school i, the area covered by postal 

(i.e., ZIP) code j (Zj), and Ai ∩ Zj the area of the intersection of the two. We then have, 

 

Combining the two quantities we then estimate the relative community incidence si of 

each school as the weighted average of the postal codes relative burden via the following: 

 . 

3.2. Additional Results 

Appendix Table 4 gives the cumulative on-campus attack rate in each school for three 

allocation strategies: no testing, prorated allocation of 14-day total testing capacity, and optimal 

allocation of 14-day prorated total testing capacity. The results are given for the scenarios in 
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which all schools have different transmission rates (first three substantive columns), and when 

they all have the same transmission rate (R0 of 1.0, last three columns). The prorated and optimal 

allocations when schools have different transmission rates correspond to the results shown in 

Figure 4 panels A, B. 

The additional results below analyzing the 11 high schools in AISD assume rapid tests 

with a sensitivity of 95% for symptomatic individuals, 80% for asymptomatic people, and a 99% 

specificity, based on reported estimates of the Abbott BinaxNOW antigen tests (10,11). 

Appendix Figure 5 shows results similar to those shown in Figure 4 panels A, B in the 

main text, but here the transmission rate in all schools is identical and equal to 1.0. The blue bars 

showing the optimal allocation in the left panel correspond to the diamonds shown in Figure 4, 

panel A (main text). Appendix Figure 6 shows results similar to those shown in Figure 5 (main 

text), except that here the schools have the same transmission risk of R0 = 1.0. 

Appendix Figure 7 shows the risk level of each school under an optimal allocation when 

the on-campus transmission rate used as input to the optimization problem is different from the 

actual transmission rate of each school. Specifically, we derived an optimal allocation assuming 

all schools have the same on-campus transmission rate R0 of 1.0 when schools actually have 

different on-campus transmission rates. The gray dots correspond to the resulting risk levels 

under that allocation, while the blue dots correspond to the risk level achieved when using the 

correct transmission rate to derive the optimal allocation, and the orange dots correspond to a pro 

rata allocation. The risk of most schools ends up being similar under the two optimal allocations, 

with the allocation derived using the wrong transmission rates typically resulting with in a risk 

level that is closer to the optimized risk level than that of the pro rata allocation, with the 

exception of schools H and I for which the pro rata allocation happens to be very close to optimal 

in that scenario. 

4. Toy System Results 

Appendix Table 5 below contains the details of the numbers shown in Figure 1, panel A 

in the main text. It gives the expected proportion of students infected on-campus for different 

quarantine strategies, testing frequencies, and in-school R0. Appendix Table 6 contains the 
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details of the numbers shown in Figure 2, panel A in the main text. It gives the proportion of 

school days students either miss school, infected or not, or are at school while infected. 

5. Toy System Optimization 

We show the results of the optimal test allocation on a toy system of hypothetical schools 

(Appendix Figures 8, 9, 14). There are six schools of 500 students each in this system, three with 

a low daily community incidence of new cases (35 per 100,000) and three with a high daily 

community incidence (70 per 100,000). In each of the two groups the schools have different in-

school transmission rates, low (unmitigated R0 = 1.0), moderate (unmitigated R0 = 1.5), and high 

(unmitigated R0 = 2.0). 

Appendix Figure 8 shows the number of averted infections through surveillance testing 

with a 2-week testing frequency budget, compared to no surveillance testing, for both a prorated 

allocation and an optimal allocation. Using the distributions of on-campus infections for a school 

under the scenario without testing, and under a scenario with testing, we can calculate the 

number of averted infections through testing using inversion sampling. We denote by Fno testing 

and Ftesting the cumulative distribution functions (CDF) for the number of on-campus infections 

of the scenarios without testing and with testing, respectively. We then generate 300 random 

numbers Uj, j ∈ [1, 300], uniformly distributed between 0 and 1, and we calculate the number of 

averted infections as follows: 

. 

As we move from no testing to a prorated allocation, we decrease the risk of all schools, 

and when we move from the prorated allocation to an optimal allocation, the performance of the 

three lowest-risk schools worsens slightly, i.e., the low-low, low-moderate, and high-low schools 

(incidence-transmission pairs). Meanwhile the number of cases averted at the remaining three 

schools grows significantly; hence, the total system risk decreases in an optimal allocation. 

Appendix Figure 9 shows the optimal allocation of tests to all schools under different 

testing budgets, with the 14 days column corresponding to the allocation that yields the 

distributions of averted cases shown in Appendix Figure 8. No matter the testing frequency, 

under an optimal allocation the testing capacity is diverted from the same three low-risk schools 
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to the higher-risk schools. The low-low school receives the fewest tests under all budgets, while 

the high-high school receives the most. For instance, for a budget that would allow us to test all 

students in the system every 10 days on average, it would be optimal to test all students in the 

high-high school every week, while it would only be necessary to test students in the low-low 

school every 4 weeks to achieve the same overall level of risk. As a result, the risk profiles of all 

schools are very similar under the optimal allocation below that shows the distribution of on-

campus infections for all schools under prorated and optimal allocations (Appendix Figure 14). 

6. Sensitivity Analysis 

6.1. Quarantine Strategy and Imperfect Surveillance Tests 

It is now widely accepted that antigen tests for COVID-19 are effective at detecting 

infectious people, but there have been debates regarding their true performance (25). As such, we 

ran some sensitivity analyses using imperfect surveillance tests. Specifically, we used a test 

sensitivity of 95% for symptomatic individuals, 80% for asymptomatic (including pre-

symptomatic) people, and we used a specificity of 99%, corresponding to published estimates of 

the Abbott BinaxNOW tests (10,11). Appendix Figure 10 shows results similar to those shown in 

Figure 1A and 1B (main text), the proportion of students infected in schools under different 

testing frequencies, for the same two quarantine strategies considered in Figure 1 (main text), as 

well as a scenario using imperfect tests and classroom quarantines. 

6.2. School Days Missed 

In Figure 2, panel A (main text) we detail the proportion of school days missed for a 

school with low community incidence and moderate transmission risk, for two quarantine 

strategies. In Appendix Figure 11, we show analogous results for the other hypothetical schools 

considered in our system, as well as the case in which imperfect tests are used. 

The results are qualitatively similar across schools. We notice that holding other factors 

constant, a higher community incidence leads to more school days missed as more introductions 

of the disease in the school lead to more students being quarantined. 

The bottom panels in each figure consider the case in which entire classrooms are 

quarantined while using imperfect tests with 99% specificity and with 80% and 95% sensitivity 

for asymptomatic and symptomatic individuals, respectively. While these tests reduce cases to a 
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similar extent as perfect tests (see Appendix Figure 10) the false positives (students testing 

positive despite not being infected) lead to students missing more school time while healthy, 

with school days missed increasing with the testing frequency. 

We can also see that when the transmission risk is high, increasing the testing frequency 

does not lead to more school days missed when quarantining entire classrooms. Indeed, when the 

transmission risk is low enough some of the infected individuals found through surveillance 

testing would not infect anyone else, but entire classrooms are still quarantined, so that more 

frequent testing leads to more missed days. On the other hand, when the transmission rate is high 

more frequent testing allows us to find infected individuals earlier, before more infections occur, 

thus breaking transmission chains. This effect is also seen by looking at the proportion of days in 

school while infected when only households are quarantined: when the transmission risk is low 

that proportion decreases slowly as testing increases while it decreases dramatically as testing 

frequency increases when transmission risk is high. 

6.3. Quarantine Duration and Contacts Quarantined 

While many school districts have used a policy of quarantining contacts of a person 

testing positive for COVID-19 for 14 days, the Centers for Disease Control and Prevention 

(CDC) has continually been updating its interim guidance throughout the pandemic, saying in 

February 2021, that 10 days of isolation were sufficient in most cases, and in January 2022, it 

further shortened the isolation period to 5 days (26). We evaluated the impact of shorter isolation 

periods, either 7 days or 10 days, and compared it with our baseline assumption of a 14-day 

isolation period. Appendix Figure 12 shows the tradeoff between reducing infections and 

minimizing missed school days for different quarantine strategies at various testing frequencies 

for schools with a moderate transmission risk. 

The different quarantine strategies are represented by different marker types and darker 

colors indicate more frequent surveillance testing. While quarantining entire classrooms for 

longer periods reduces infections more than shorter quarantines, it also leads to more school days 

missed for students. When testing is frequent enough, nearing weekly testing, longer quarantines 

are only marginally more effective at preventing infections (points closer to the x-axis) at the 

expense of more school days missed (points further from the y-axis). 
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6.4. Total Testing Budget 

One way to visualize the allocation of tests across a set of schools is to graph the risk 

level of all schools as a function of the testing frequency in the same graph. Appendix Figure 13 

shows the risk level of each of the six hypothetical schools in the system we consider, as we 

move from no surveillance testing to weekly testing. The risk of each school is again defined as 

the average of the expected on-campus infection rate and CVaR. 

As the testing frequency increases the risk of each school decreases. The objective of our 

optimization is to find the lowest horizontal line on the graph such that the testing budget is 

respected. A horizontal line corresponds to all schools having the same risk, unless some school 

has reached the maximum testing frequency of 7 days, or a school does not need any testing to 

reach the same risk level as the other schools. 

The left y-axis represents each school’s risk, while the right y-axis represents the 

necessary budget required to achieve the corresponding maximum risk across schools. We can 

see that the lower the risk across schools becomes, the more expensive it becomes to further 

decrease it; to achieve a similar decrease requires much more frequent testing, so many more 

tests every week. 

Given a certain budget we can draw a horizontal line at the corresponding point on the 

right axis and the intersection of this line with each of the schools’ curves gives us the optimal 

allocation that minimizes the maximum risk across schools. 

We can then verify that the full risk profiles of the six schools are very similar under the 

optimal allocation for the two budgets shown by the horizontal lines above. Appendix Figure 14 

shows the distribution of on-campus infections in all the schools for three testing strategies. The 

no testing strategy shows the risk of each school without testing, the pro rata allocation shows 

the risk of all schools under the suboptimal allocation in which all schools receive the same 

number of tests, while under the optimal allocation all schools have a similar risk profile, and the 

total system risk is lowest. 

6.5. Objective Function Optimized 

In Appendix Figure 15 we show the sensitivity of the optimal allocation of tests in each 

school as we parametrically vary the objective function. We consider two testing budgets, first a 

budget in which all students can be tested every 4 weeks on average, and then every 2 weeks. 
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In the left panels we fix the weight of the CVaR term to 50%, and thus we have equal 

weight for the expected value of the infection rate when defining the risk of each school, R(s), 

and we vary the CVaR level β. That is we solve the problem (P50%β) where β goes from 5% to 

95%. In the middle panel we fix β = 90% and we solve (Pw,90%) for w increasing from 0% to 

100%, i.e., increasing the weight on the CVaR term. In the right panels we solve the problem 

(Ptotal), which aims to minimize the total system-wide expected infections. 

When we only have a budget to test students every 4 weeks the impact of w and β on the 

solution of (Pwβ) is limited, with only the school with the pair of low community incidence and 

moderate R0 being allocated marginally more tests as w and β increase. 

However, when we have a budget to test students every 2 weeks, we see much more 

variation in the allocation. This comes from the fact that with that budget the school with the pair 

of high community incidence and high R0 is being allocated nearly enough tests to test weekly. 

As can be seen in the earlier Appendix Figure 13, the risk of that school does not change much as 

testing changes from every 9 days to every 7 days, so that small changes in w or β can impact the 

school risk enough to then cause large changes in the allocations to the other schools. While the 

changes in allocation for the school with high community incidence and high R0 can seem large 

for small changes in the school risk parameters, the allocations to the other schools do not 

change drastically. 

Lastly, in the right panels we see that when minimizing the total infections across all 

schools the same schools receive more tests than under a pro rata allocation, but there tends to be 

smaller differences in the number of tests allocated across schools as all schools receive a share 

closer to their pro rata allocation. 
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Appendix Table 1. School day schedule used in a model for COVID-19 test allocation strategy to mitigate SARS-CoV-2 infections 
across school districts*  

Time Context Interactions 
7:30–8:00 AM Bus 19 students and 1 bus driver 
8:00 AM–12:00 PM Classroom 19 students and 1 teacher 
12:00–1:00 PM Break 9 students and 2 adults 
1:00–3:00 PM Classroom 19 students and 1 teacher 
3:00–3:30 PM. Bus 19 students and 1 bus driver 
*The interactions column indicates the number of contacts a single student has in each context. The 
individuals that a student interacts with are set at the beginning of a simulation and stay the same 
throughout. 

 
 
 
 
Appendix Table 2. Transmission parameters used in a model for COVID-19 test allocation strategy to mitigate SARS-CoV-2 
infections across school districts 
Parameter Value Source 
Simulation duration 10 weeks  
No. students 500  
No. adults in school 25 teachers, 25 bus drivers, 16 staff  
τ: proportion symptomatic 20% of children, 57% of adults Davies et al., Gudbjartsson et al. (7,8) 
wA: relative infectiousness of 
asymptomatic persons 

2/3 He et al. (6) 

dinc: duration of incubation period dinc ≈ Triangular(3.2, 5.2, 7.2) (in days) Zhang et al. (12) 
dpre: duration of pre-(a)symptomatic period dpre ≈ dinc * Triangular(0.458, 0.558, 0.658) 

(average 2.9 d) 
He et al. (5) 

dS: duration of (a)symptomatic period dinc ≈ Triangular(4, 8, 12) (in days) He et al. (5) 
Household attack rate 16.6% Madewell et al. (3) 
R0: unmitigated basic reproduction 
number of children 

1.0, 1.5, 2.0  

β: probability of infection in a half-hour for 
individual with infectiousness of 1.0 

Fitted to R0  

Daily community incidence 35 or 70 per 100,000 Average high and low incidence estimated 
over several weeks in Austin, TX during 

winter 2020–2021 
 

 
 
Appendix Table 3. List of high schools from Austin Independent School District included in a model for COVID-19 test allocation 
strategy to mitigate SARS-CoV-2 infections across school districts* 
School code School name No. students Relative incidence† School R0 
A LBJ 60 1.95 1.41 
B Navarro 100 1.5 0.8 
C Northeast Early College 80 1.5 0.94 
D Eastside Memorial 40 1.49 0.87 
E Travis 80 1.18 0.84 
F Crockett 100 1.04 0.95 
G Akins 180 1.0 0.88 
H Anderson 140 0.7 1.1 
I Austin 140 0.58 1.26 
J McCallum 120 0.54 0.79 
K Bowie 180 0.37 0.98 
*Includes assigned parameter values.  
†Relative community incidence values are calculated by weighing the relative total attack rates of COVID-19 of the 
ZIP codes calculated in (23) using the proportion of students coming from each ZIP code as a weight. Schools are 
ordered according to their relative incidence. 
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Appendix Table 4. Median proportion of students infected in a model for COVID-19 test allocation strategy to mitigate SARS-CoV-2 
infections across school districts* 
School 
code 

Different transmission rates†  Same transmission rate‡ 
No testing Prorated allocation Optimal allocation  No testing Prorated allocation Optimal allocation 

A 14 (0.9–45.6) 4.0 (0.1–22.9) 2.2 (0–15)  7.3 (0.4–34.2) 2.7 (0.1–17) 1.6 (0–10.8) 
B 5.3 (0.4–16.4) 1.9 (0.1–9.6) 1.4 (0–8.4)  7.2 (0.6–25.5) 2.6 (0.1–13.6) 1.5 (0–8.8) 
C 6.3 (0.4–23.7) 2.1 (0.1–11.9) 1.3 (0–8.9)  6.4 (0.4–23.5) 2.4 (0.1–14) 1.5 (0–10.2) 
D 3.6 (0–31.3) 1.8 (0–13.7) 1.0 (0–8.7)  4.3 (0–33.7) 2.1 (0–16.7) 1.1 (0–9.5) 
E 3.9 (0.1–21.3) 1.5 (0–9.5) 1.3 (0–8.3)  4.6 (0.1–26.4) 1.7 (0–11.7) 1.3 (0–9.5) 
F 4.3 (0.2–22.1) 1.7 (0–10) 1.4 (0–8.7)  4.3 (0.1–23.6) 1.8 (0–11) 1.4 (0–9.3) 
G 4.3 (0.6–13.7) 1.6 (0.1–7.7) 2.0 (0.1–7.6)  5.7 (0.6–17.4) 2.1 (0.1–7.1) 2.6 (0.2–8.8) 
H 4.6 (0.2–23.6) 1.5 (0–9.1) 1.4 (0–8.8)  3.2 (0.1–19.1) 1.3 (0–7.6) 1.7 (0.1–9.3) 
I 4.8 (0.1–26.8) 1.3 (0–8.6) 1.2 (0–8.4)  3.1 (0.1–17.9) 0.9 (0–6.4) 1.4 (0–9.4) 
J 1.7 (0–11.4) 0.7 (0–6.3) 1.1 (0–8.8)  2.2 (0–16.3) 1.0 (0–7.3) 1.2 (0–9.8) 
K 1.6 (0–13) 0.7 (0–5) 1.1 (0–8.6)  1.6 (0–12.1) 0.6 (0–5.2) 1.3 (0–9.7) 
Total 5.8 (3.1–9.6) 2.3 (1.1–4.1) 2.1 (0.9–4)  5.7 (2.9–9.5) 2.3 (1.1–4) 2.3 (1–4.1) 
*Values represent % (95%CI) of students infected on-campus across 300 simulations for each school. The prorated and optimal allocations both 
correspond to total testing capacity every 14 days. 
†Cumulative on-campus attack rates when each school has a different transmission rate.  
‡Cumulative on-campus attack rates when all schools have the same transmission rate (R0 = 1.0).  

 
 
 
 
Appendix Table 5. Expected proportion of students infected on-campus over 10 weeks under different scenarios in a model for 
COVID-19 test allocation strategy to mitigate SARS-CoV-2 infections across school districts* 

Quarantine strategy Testing frequency, d 
Cumulative incidence rate, % (95% CI) 

Low transmission Moderate transmission High transmission 
Household + class† None 4.0 (0.8–9.1) 9.3 (1.8–19.6) 18.2 (4.8–35.7) 
 28 2.3 (0.6–5.1) 4.2 (0.7–9.2) 7.0 (2.1–14.6) 
 21 2.0 (0.3–4.8) 3.7 (0.8–8.0) 5.5 (1.3–12.1) 
 14 1.5 (0.2–3.3) 2.9 (0.6–6.2) 4.1 (1.0–8.3) 
 7 1.0 (0.1–2.5) 1.5 (0.2–3.8) 2.1 (0.3–4.8) 
Household only‡ None 6.1 (1.1–15.1) 19.4 (2.9–41.5) 50.0 (21.1–80.8) 
 28 3.7 (0.6–9.2) 10.5 (1.9–24.5) 26.6 (1.6–52) 
 21 3.3 (0.5–8.7) 8.8 (1.0–23.4) 22.3 (3.6–49.4) 
 14 2.8 (0.4–7.0) 6.3 (0.8–15.6) 14.7 (1–35.2) 
 7 1.2 (0.1–3.2) 2.1 (0.2–5.4) 3.4 (0.4–8) 
*Each column represents a different in-school R0. We show results for increasing testing frequencies, from no testing to weekly testing. 
†Class and households quarantined when a person tests positive. 
‡Only households quarantined when a person tests positive.  

 
 
 
 
Appendix Table 6. Expected proportion of school days students miss or are in school while infected for a school with moderate 
transmission rate in a model for COVID-19 test allocation strategy to mitigate SARS-CoV-2 infections across school districts* 

Quarantine strategy Testing frequency, d 
Proportion of school days, % (95% CI) 

At school infected Missed school not infected Missed school infected 
Household + class† None 1.4 (0.3–2.8) 5.3 (1.3–10.5) 0.6 (0.1–1.3) 
 28 0.6 (0.1–1.2) 6.5 (2.0–12.0) 0.6 (0.1–1.2) 
 21 0.5 (0.2–1.0) 6.8 (2.6–11.9) 0.5 (0.2–1.0) 
 14 0.4 (0.1–0.7) 7.3 (2.9–12.1) 0.5 (0.2–0.9) 
 7 0.2 (0.1–0.3) 7.4 (3.4–12.0) 0.5 (0.2–0.8) 
Household only‡ None 3.0 (0.5–6.5) 0.6 (0.2–0.9) 0.4 (0.1–0.7) 
 28 1.6 (0.4–3.5) 0.7 (0.3–1.3) 0.6 (0.2–1.2) 
 21 1.3 (0.3–2.8) 0.8 (0.3–1.4) 0.6 (0.2–1.2) 
 14 0.8 (0.2–1.8) 0.8 (0.4–1.4) 0.6 (0.2–1.3) 
 7 0.3 (0.1–0.5) 0.6 (0.3–1.0) 0.5 (0.2–1.0) 
*Each column represents a different type of day. We show results for increasing testing frequencies, from no testing to weekly testing. 
†Class and households quarantined when a person tests positive. 
‡Only households quarantined when a person tests positive.  
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Appendix Figure 1. Schematic of the agent-based SEPIR model used for a COVID-19 test allocation 

strategy to mitigate SARS-CoV-2 infections across school districts. Upon infection, susceptible individuals 

(S) progress to exposed (E) and then to either pre-symptomatic infectious (PY) or pre-asymptomatic 

infectious (PA), from which they move to symptomatic infectious (IY) and asymptomatic infectious (IA), 

respectively. All cases eventually progress to a recovered class, where they remain protected from future 

infection (R). The proportion of individuals who become asymptomatic rather than symptomatic varies 

between children and adults. SEPIR, susceptible-exposed-presymptomatic-infectious-recovered. 

 

 

Appendix Figure 2. Relative infectiousness profile in a model for COVID-19 test allocation strategy to 

mitigate SARS-CoV-2 infections across school districts. The graph shows infectiousness through time of 

3 infected persons relative to symptom onset. The average person (blue line) stays in the presymptomatic 

or preasymptomatic compartment for 2.3 days and the asymptomatic or symptomatic compartment for 8 

days. Individual 1 spends 1.8 days the presymptomatic and 10 days in the infectious compartments. 

Individual 2 spends 2.8 in the presymptomatic and 7 days in the infectious compartments. 
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Appendix Figure 3. Processing results from the transmission model for COVID-19 test allocation 

strategy to mitigate SARS-CoV-2 infections across school districts. Processing results provide inputs to 

the optimization model. In both graphs the school used has an unmitigated R0 of 1.5, daily community 

incidence of 35 cases per 100,000 population, and perfect COVID-19 tests are used. A) Shows frequency 

after fitting a gamma distribution to the results of the simulation model. The blue bars represent the 

number of students infected on a campus across 300 simulations. The orange line represents the best 

fitted nonnegative gamma distribution. Results correspond to a testing frequency of once every 4 weeks. 

B) School risk based on testing frequency. The graph shows fitting of a non-increasing curve to the risk of 

a school as a function of the proportion of students tested weekly. The blue dots represent the risk levels 

calculated by using the fitted gamma distributions. The orange line represents the best fitted curve used 

as input to the optimization model. The specific risk metric used is half the sum of the on-campus infection 

rate’s expected value and 90% conditional value-at-risk. 
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Appendix Figure 4. Reported COVID-19 cases in AISD high schools as a function of total school 

population used in a model for COVID-19 test allocation strategy to mitigate SARS-CoV-2 infections 

across school districts. COVID-19 cases were obtained from AISD’s public dashboard 

(https://www.austinisd.org/dashboard) on March 8, 2021. School population includes total enrollment and 

staff. The orange line represents the best linear fit. AISD, Austin Independent School District 
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Appendix Figure 5. Testing frequency and median COVID-19 infection rate of 11 high schools in the 

Austin Independent School District used in a model for COVID-19 test allocation strategy to mitigate 

SARS-CoV-2 infections across school districts. A) Allocations for two testing strategies: pro rata, in which 

all schools test their students once per every 14 days (dashed orange line); optimized to minimize the 

maximum risk of any school, considering variation in community risk (blue bars). B) The median percent 

of students infected on-campus under the optimized strategy (blue) and pro rata strategy (orange), over a 

10-week period. Arrows indicate increase or decrease in infection rate going from the pro rata to the 

optimal strategy. The model assumes all schools have the same transmission risk. Values are averages 

across 300 simulations. The model assumes that classrooms quarantine for 14 days after a positive test. 
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Appendix Figure 6. Cumulative proportion of students infected in a modeled COVID-19 test allocation 

strategy to mitigate SARS-CoV-2 infections across school districts. The graphs represent 3 testing 

scenarios: A) No testing; B) all schools test all students every 14 days; C) optimized allocation of tests 

based on schools having the same transmission risk, assuming a district-wide budget of one test per 

student every 14 days. Graphs show 11 high schools in the Austin Independent School District over a 10-

week period. Schools are ordered from A–K based on community incidence in the school catchment area 

(from high to low). Graphs depict 7-day moving averages based on a single simulation for each scenario 

and school. To show representative projections, we selected the simulation that produced a cumulative 

attack rate closest to the median across all 300 simulations. 
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Appendix Figure 7. COVID-19 risk for schools used in a model for COVID-19 test allocation strategy to 

mitigate SARS-CoV-2 infections across school districts. We applied the model to 11 high schools in the 

Austin Independent School District. The graph shows the risk level of each school (A–K) under 3 possible 

testing allocations and a 14-day testing capacity when schools have different on-campus transmission 

rates. Risk was the objective value minimized in the optimization problem (P), defined as the average of 

the expected cumulative incidence (i.e., the mean across 300 simulations) and the projected tail risk. Blue 

dots correspond to the risk level under the optimal allocation obtained when we correctly assigned 

different on-campus transmission rates to each school. Gray dots correspond to the risk level obtained 

when the optimal allocation is obtained assuming all schools have the same on-campus reproduction 

number R0 of 1.0. Orange dots correspond to the risk level under pro rata testing, in which all schools test 

their students once per every 14 days. 
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Appendix Figure 8. Proportion of on-campus infections averted in a model for COVID-19 test allocation 

strategy to mitigate SARS-CoV-2 infections across school districts. Averted on-campus infections are 

relative to no surveillance testing, for each of 6 different schools and the entire system over a 10-week 

period under 2 possible testing allocation strategies. In the modeled scenario, both allocation strategies 

have a budget to test students every 14 days. In the pro rata allocation, all schools test students every 14 

days. When an individual tests positive, their entire classroom and household are quarantined for 14 

days. In the optimal strategy, tests are allocated to minimize the maximum risk of any school, considering 

variation in community and in-school transmission risks. Boxes indicate interquartile range (IQR); 

horizontal bars inside boxes indicate median; whiskers indicate points that lie within 1.5 IQRs of the 

closest quartile. 
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Appendix Figure 9. Optimal test allocations under different budgets in a model for COVID-19 test 

allocation strategy to mitigate SARS-CoV-2 infections across school districts. The horizontal dotted lines 

represent the prorated allocation for each budget. A green line indicates that a school receives more tests 

under our optimal allocation than under the prorated one, and a red line indicates a school receives fewer 

tests than the optimal allocation. Transmission risk has an R0 value corresponding to 1.0 (low risk), 1.5 

(moderate risk), 2.0 (high risk). Low community incidence is set at 35 new daily infections per 100,000 

population; high community incidence is set at 70 new daily infections per 100,000 population. R0, basic 

reproduction number. 
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Appendix Figure 10. Projected effects of proactive SARS-CoV-2 testing in a model for COVID-19 test 

allocation strategy to mitigate SARS-CoV-2 infections across school districts. A) Low community 

incidence (35 new daily infections per 100,000 population). B) High community incidence (70 new daily 

infections per 100,000 population). We modeled fraction of students infected on campus depending on 

the frequency of proactive testing (none, or once per every 28, 21, 14, or 7 days) over a 10-week period 

in a school with 500 students. We modeled 3 scenarios (colors): entire classrooms are quarantined for 14 

days after a positive test, by using either perfect or imperfect tests, or only households of persons testing 
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positive are quarantined for 14 days with perfect tests. Imperfect tests have a sensitivity of 95% for 

symptomatic individuals, 80% for asymptomatic (including pre-symptomatic) people, and we used a 

specificity of 99%, while perfect tests have 100% sensitivity and specificity. Transmission risk has an R0 

value corresponding to unmitigated basic reproduction numbers of 1.0 (low risk), 1.5 (moderate risk), 2.0 

(high risk). The results are based on 300 stochastic simulations for each scenario. Boxes indicate 

interquartile range (IQR); horizontal bars inside boxes indicate median; whiskers indicate points that lie 

within 1.5 IQRs of the closest quartile. R0, basic reproduction number. 

 

 

Appendix Figure 11. Effects of student testing on in-person attendance in a model for COVID-19 test 

allocation strategy to mitigate SARS-CoV-2 infections across school districts. A) Low community 

incidence (35 new daily infections per 100,000 population) and low transmission risk (R0 = 1.0). B) Low 

community incidence and moderate transmission risk (R0 = 1.5). C) Low community incidence and high 

transmission risk (R0 = 2.0). D) High community incidence (70 new daily infections per 100,000 

population) and low transmission risk (R0 = 1.0). E) High community incidence and moderate transmission 

risk (R0 = 1.5). F) High community incidence and high transmission risk (R0 = 2.0). We modeled student 

attendance depending on the frequency of proactive testing (none, or once per every 28, 21, 14, or 7 

days) over a 10-week period in schools with 500 students based on a total of 300 simulations for each 

scenario. Graphs show average number of school days missed due to isolation while infected, or while 

quarantined and disease-free, as well as average number of days in school while infected, depending on 
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the testing frequency. The top row of each figure corresponds to perfect tests where either entire 

classrooms or households only are quarantined after a positive test. The bottom rows correspond to tests 

with 99% specificity, 80% sensitivity for asymptomatic persons, and 95% sensitivity for symptomatic 

individuals, and entire classrooms quarantined after a positive test. 

 

 

Appendix Figure 12. Tradeoff between infections prevented and school days missed for different 

quarantine strategies in a model for COVID-19 test allocation strategy to mitigate SARS-CoV-2 infections 

across school districts. A) Low community incidence (35 new daily infections per 100,000 population). B) 

High community incidence (70 new daily infections per 100,000 population). Each point represents the 

average proportion of students infected on-campus (vertical axis) and the average proportion of school 

days missed (horizontal axis) for 300 simulations over a 10-week horizon. Schools have an unmitigated 

R0 of 1.5. R0, basic reproductive number. 
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Appendix Figure 13. Individual school risks as testing frequency increases in a model for COVID-19 test 

allocation strategy to mitigate SARS-CoV-2 infections across school districts. The left axis indicates 

individual school risk for a given testing frequency. The right axis indicates the budget necessary to 

achieve a given risk level. The horizontal lines explicitly show the minimal risk attainable for system-wide 

testing capacities of 4 weeks and 2 weeks, with the circles and squares representing the schools’ risk and 

testing level under the optimal allocations for these two budgets. The crosses represent the risk and 

allocation of each school under a prorated allocation of an every 4-weeks testing budget. Transmission 

risk has a value corresponding to unmitigated an R0 of 1.0 (low risk), 1.5 (moderate risk), or 2.0 (high 

risk). Low community incidence corresponds to 35 new daily infections per 100,000 population and high 

community incidence corresponds to 70 new daily infections per 100,000 population. R0, basic 

reproductive number. 
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Appendix Figure 14. Distribution of the proportion of students infected on-campus in each school and in 

the entire school system in a model for COVID-19 test allocation strategy to mitigate SARS-CoV-2 

infections across school districts. We modeled infections over a 10-week period under 3 possible testing 

strategies. The pro rata and optimal allocations use the same total testing budget for a testing frequency 

of every 4 weeks (A) or for a for a testing frequency of every 2 weeks (B). Boxes indicate interquartile 

range; horizontal bars inside boxes indicate median; whiskers indicate points that lie within 1.5 IQRs of 

the closest quartile. Transmission risk has a value corresponding to unmitigated an R0 of 1.0 (low risk), 

1.5 (moderate risk), or 2.0 (high risk). Low community incidence corresponds to 35 new daily infections 

per 100,000 population and high community incidence corresponds to 70 new daily infections per 

100,000 population. R0, basic reproductive number.  
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Appendix Figure 15. Optimal allocation to each school for different objective functions in a model for 

COVID-19 test allocation strategy to mitigate SARS-CoV-2 infections across school districts based on 

budgets for a testing frequency of 4 weeks (A), or for a testing frequency of 2 weeks (B). The left panels 

correspond to an objective function where the relevant quantile for CVaR increases from the 5% quantile 

to the 95% quantile, with the weight on the CVaR fixed at 50% (with the other 50% on the number of 

expected infections). The center panels correspond to an objective function where the weight of CVaR 
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term grows from 0% (expectation only) to 100% (CVaR only), with the CVaR level fixed at 90%. The right 

panels correspond to the optimal allocation obtained from minimizing the total number of on-campus 

infections across schools. Transmission risk has an R0 value corresponding to unmitigated basic 

reproduction numbers of 1.0 (low risk), 1.5 (moderate risk), or 2.0 (high risk). CVaR, conditional value-at-

risk; R0, basic reproduction number. 


