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The Omicron SARS-CoV-2 variant of concern 
(VOC) is highly transmissible in humans. As of 

April 2022, it has outcompeted other known vari-
ants and dominated in different regions (1). Its 
spike protein has >30 mutations compared with 
the ancestral strain (2). A 2022 structural study in-
dicates the Omicron spike protein is more stable 
than that of the ancestral strain (3); this finding 
prompted us to hypothesize that Omicron VOC is 
also more stable on different surfaces. We previ-
ously showed that the ancestral SARS-CoV-2 strain 
can still be infectious at room temperature for sev-
eral days on smooth surfaces and several hours on 
porous surfaces (4). 

We used previously described ancestral  
SARS-CoV-2 (PANGO lineage A) and Omicron VOC 
(PANGO lineage BA.1) in this study (5,6). We tested 
their stability on different surfaces using our previ-
ously described protocol (4,7). In brief, we applied 
a 5-μL droplet of each virus (107 50% tissue culture 
infectious dose [TCID50]/mL) on different surfaces in 
triplicate. We incubated the treated surfaces at room 
temperature (21°C–22°C) for different time points as 
indicated and then immersed them in viral transport 
medium for 30 min to recover the residual infectious 
virus. We titrated the recovered virus by TCID50 as-
says using Vero E6 cells, as described (4,7).

Compared with the ancestral SARS-CoV-2, the 
Omicron BA.1 variant was more stable on all surfac-
es we studied (Table). On day 4 postinoculation, we 
recovered no infectious ancestral SARS-CoV-2 from 
stainless steel, polypropylene sheet, or 2 of 3 glass 
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As of April 2022, the Omicron BA.1 variant of concern 
of SARS-CoV-2 was spreading quickly around the world 
and outcompeting other circulating strains. We exam-
ined its stability on various surfaces and found that this 
Omicron variant is more stable than its ancestral strain 
on smooth and porous surfaces.



samples. We did not recover infectious virus from 
glass on day 7. In contrast, infectious Omicron vari-
ant was still recoverable from all treated surfaces on 
day 7 postincubation.

The stability of the Omicron variant was also 
higher than ancestral SARS-CoV-2 on porous surfac-
es, such as tissue paper and printing paper. On tissue 
paper, viable ancestral SARS-CoV-2 was no longer 
recoverable after a 30-minute incubation. However, 
we detected viable Omicron variant after a 30-minute 
incubation. On printing paper, we detected no infec-
tious virus after a 15-minute incubation. In contrast, 
viable Omicron variant was recovered from 2 of 3 
replicates after a 30-minute incubation.

To confirm our observations, we used transmem-
brane serine protease 2 (TMPRSS2)–expressing Vero 
E6 cells to titrate infectious virus particles recov-
ered from treated stainless steel and printing paper 
(Appendix Table, https://wwwnc.cdc.gov/EID/
article/28/7/22-0428-App1.pdf). On stainless steel, 
infectious ancestral virus was undetectable on day 10 

postincubation, whereas viable Omicron variant was 
still recoverable. Similarly, no infectious ancestral vi-
rus was detected on printing paper after a 30-minute 
incubation, whereas we detected viable Omicron vari-
ant in 1 out of 3 replicates. Although the virus could 
be trapped in the porous materials and inefficiently 
recovered, our findings confirm that Omicron variant 
is more stable than its ancestral strain on surfaces.

We noted that the cell line used for virus titration 
can affect our findings. It has been reported that Omi-
cron variant is less dependent upon TMPRSS2 for cell 
entry (8); therefore, we were not surprised that differ-
ent cell lines led to different viral inactivation profiles. 
Nonetheless, results from both cell lines suggest that 
the Omicron variant is more stable than the ancestral 
strain. This observation is consistent with other recent 
findings (R. Hirose et al., unpub. data, https://www.
biorxiv.org/content/10.1101/2022.01.18.476607v1). 
More evidence is needed to account for the increased 
transmissibility of Omicron variant. The virus’s stabil-
ity on surfaces may be one factor and should be taken 
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Table. Stability of ancestral SARS-CoV-2 and of Omicron variant on different surfaces* 

Material 
Incubation 

time† 

Ancestral SARS-CoV-2 

 

Omicron variant 
Mean log10(TCID50/mL) 

±SD‡ 
% Reduction 
in viral titer 

Mean log10(TCID50/mL) 
+SD‡ 

% Reduction 
in viral titer 

Stainless steel 0 5.02 +0.39 NA  5.35 +0.18 NA 
 3 h 4.21 +0.36 85.15  4.82 +0.23 69.78 
 6 h 3.73 +0.10 95.80  4.62 +0.31 79.86 
 1 d 2.99 +0.17 99.21  4.65 +0.17 80.28 
 2 d 2.08 +0.11 99.91  4.51 +0.15 85.82 
 4 d § >99.93  3.72 +0.12 97.72 
 7 d § >99.93  3.58 +0.30 98.19 
Polypropylene 0 4.85 +0.23 NA  5.43 +0.16 NA 
 3 h 4.12 +0.19 81.72  4.65 +0.34 81.27 
 6 h 3.53 +0.15 95.43  4.33 +0.14 92.34 
 1 d 3.13 +0.34 97.86  4.45 +0.23 89.25 
 2 d 2.01 +0.10¶ >99.86  4.34 +0.25 91.53 
 4 d § >99.88  3.97 +0.19 96.48 
 7 d § >99.88  2.95 +0.27 99.65 
Glass 0 5.10+0.24 NA  5.65 +0.28 NA 
 3 h 4.26 +0.05 86.79  4.90 +0.15 83.62 
 6 h 3.69 +0.11 96.42  4.52 +0.13 93.20 
 1 d 2.83 +0.13 99.49  4.20 +0.01 96.84 
 2 d 2.14 +0.13 99.90  4.43 +0.29 93.87 
 4 d 1.96 +0.00¶ >99.93  4.06 +0.16 97.64 
 7 d § >99.93  3.76 +0.10 98.83 
Tissue paper 0 4.70 +0.22 NA  5.21 +0.14 NA 
 5 min 3.85 +0.28 84.98  4.64 +0.70 53.94 
 15 min 2.12 +0.14 99.75  3.72 +1.22 72.99 
 30 min § >99.84  2.92 +0.40 99.34 
 60 min § >99.84  § >99.95 
Printing paper 0 5.21 +0.00 NA  5.34 +0.13 NA 
 5 min 2.69 +0.16 99.68  3.26 +0.42 98.91 
 15 min § >99.94  2.20 +0.33¶ >99.91 
 30 min § >99.94  2.16 +0.36¶ >99.92 
 60 min § >99.94  § >99.96 
*Tests were performed in triplicate. NA, not applicable; TCID50, 50% tissue culture infectious dose.  
†The samples were incubated at room temperature (21°C–22°C). 
‡Vero E6 cells were used for titration of viable viruses. 
§All the triplicates were below detection limit of the TCID50 assay. 
¶One or two out of three replicates were below detection limit of the TCID50 assay. 

 



into consideration when recommending control mea-
sures against infection. A recent study revealed that 
an infectious dose as low as 10 TCID50 units could in-
fect >50% of human study participants (9). Our find-
ings indicate that Omicron variant has an increased 
likelihood for transmission by the fomite route; they 
may also indicate that the enhanced stability deduced 
from structural studies (3) and now demonstrated on 
different surfaces may be relevant for droplet or aero-
sol transmission of SARS-CoV-2. Of interest, stability 
of avian influenza A(H5N1) viruses has been shown 
to have an association with transmissibility of avian 
influenza virus between mammals by the airborne 
route, although the mechanisms underlying this asso-
ciation are not fully understood (10). Further studies 
on the stability of Omicron variant and its emerging 
subvariants in droplets and aerosols are warranted.

One limitation of our study is that the experi-
ments were conducted in a well-controlled laboratory 
environment. Variations in environmental conditions 
would affect the rate of viral inactivation. Therefore, 
the time required for virus inactivation that we dem-
onstrated may not reflect all real-life scenarios. In ad-
dition, the components of the viral droplet medium 
applied in this study were different from those of the 
respiratory droplets, which could also affect the stabil-
ity of the virus. Nonetheless, our findings demonstrate 
that the Omicron variant is more stable than the ances-
tral SARS-CoV-2 on different surfaces, a finding that 
may be relevant for determining recommendations 
for public health measures to limit virus transmission.
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Appendix 

Appendix Table. Stability of the ancestral SARS-CoV-2 and Omicron variant on stainless steel and printing paper, titrated with 

TMPRSS2-expressing Vero-E6 cells* 

Materials 

Time of 

incubation† 

Ancestral SARS-CoV-2 

 

Omicron variant 

Mean 

log10(TCID50/mL)±SD‡ 

% Reduction in viral 

titer 

Mean 

log10(TCID50/mL)+SD‡ 

% Reduction in 

viral titer 

Stainless steel 0 5.15+0.17 NA  5.45+0.08 NA 
 

6 h 4.48+0.21 77.86  4.82+0.13 76.64 
 

1 d 4.07+0.23 91.35  4.58+0.21 85.95 
 

2 d 3.75+0.11 96.14  4.48+0.32 87.78 
 

4 d 3.20+0.14 98.89  3.89+0.11 97.24 
 

7 d 2.67+0.12 99.68  3.37+0.29 99.04 
 

10 d § >99.94  2.55+0.08 99.88 

Printing paper 0 4.32+0.04 NA  4.62+0.48 NA 
 

5 min 2.92+0.27 95.53  3.64+0.31 90.95 
 

15 min 2.09+0.12¶ >99.40  2.27+0.19 99.65 
 

30 min § >99.57  2.02+0.10¶ >99.81 
 

60 min § >99.57  § >99.84 

*Tests were performed in triplicate.NA, not applicable; TMPRSS2, transmembrane serine protease 2. 

†The samples were incubated at room temperature (21-22°C). 

‡TMPRSS2-expressing Vero-E6 cells were used for titration of viable viruses. 

§All the triplicates were below detection limit of the TCID50 assay. 
¶One or 2 out of 3 replicates were below detection limit of the TCID50 assay. 
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