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Coronavirus disease (COVID-19), caused by severe 
acute respiratory syndrome coronavirus 2 (SARS-

CoV-2), emerged in China in 2019 and spread around 
the world in 2020. By August 2021, >200 million per-
sons were infected by SARS-CoV-2 and >4 million had 
died (1). A large proportion of infected persons remain 
asymptomatic or have only mild symptoms (2,3). The 
role of all infected persons should be considered in 
the maintenance of disease transmission, especially 
because asymptomatic or mildly symptomatic per-
sons often are not tested or reported to public health  

authorities (4). In addition, because of economic, politi-
cal, and social difficulties, molecular tests for detecting 
SARS-CoV-2 often are limited, particularly in develop-
ing countries (5,6). In this context, alternative measures 
must be explored to generate reliable data that enable 
government decisions to contain viral spread.

Several studies report a rapid immune response 
that culminates in the production of SARS-CoV-2 an-
tibodies in the first weeks after infection (5–8). Assess-
ment of serologic SARS-CoV-2 IgG can be an essential 
tool to measure the dynamics of virus transmission.

Some authors hypothesized that serosurveillance 
in blood donors can help monitor the evolution of 
SARS-CoV-2 infections (9–11). We conducted a large 
longitudinal study using the records of reported CO-
VID-19 cases and SARS-CoV-2 serology results from 
blood donors as inputs into a modified susceptible-
exposed-infected-recovered (SEIR) epidemic model 
(12). The proposed model delivers daily estimates of 
relevant variables that usually stay hidden, including 
the transmission rate and the cumulative number of 
reported and unreported cases of infection. We con-
sidered the continuous change of the transmission 
rate, making the estimated variables compatible with 
the shifting conditions of disease transmission. We 
used the monthly estimates of cumulative incidence 
provided by serologic analysis of blood samples to 
estimate the proportion of reported and unreported 
cases. The purpose of the model is to constitute a plat-
form for integrating and interpretating information 
coming from different sources.

Our study also provides evidence supporting the 
possibility of using serology from blood samples col-
lected in blood donation centers to estimate the accumu-
lated incidence of disease. Our results cover blood sam-
ples collected in 7 blood donation centers. Our proposed 
method provides a consistent picture of the evolution 
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During epidemics, data from different sources can pro-
vide information on varying aspects of the epidemic pro-
cess. Serology-based epidemiologic surveys could be 
used to compose a consistent epidemic scenario. We 
assessed the seroprevalence of severe acute respiratory 
syndrome coronavirus 2 (SARS-CoV-2) IgG in serum 
samples collected from 7,837 blood donors in 7 cities 
of Brazil during March–December 2020. Based on our 
results, we propose a modification in a compartmental 
model that uses reported number of SARS-CoV-2 cases 
and serology results from blood donors as inputs and 
delivers estimates of hidden variables, such as daily val-
ues of SARS-CoV-2 transmission rates and cumulative 
incidence rate of reported and unreported SARS-CoV-2 
cases. We concluded that the information about cumula-
tive incidence of a disease in a city’s population can be 
obtained by testing serum samples collected from blood 
donors. Our proposed method also can be extended to 
surveillance of other infectious diseases.
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of COVID-19 in the 7 representative cities and describes 
the cumulative incidence, daily transmission rate, and 
proportion of reported and unreported cases.

Materials and Methods

Study Population
We enrolled blood donors at 7 blood donation cen-
ters (Fundação HEMOMINAS) in Minas Gerais, 
Brazil, during March 1–December 31, 2020. These 7 
blood donation centers account for ≈60% of the blood 
collections performed by HEMOMINAS and are in 
the cities of Belo Horizonte, Governador Valadares, 
Juiz de Fora, Montes Claros, Pouso Alegre, Uberaba, 
and Uberlândia. We used Epitools (Ausvet, https://
epitools.ausvet.com.au) to calculate the number of 
samples to include monthly from each selected blood 
center based on the prevalence of COVID-19 cases 
reported by the municipal health secretaries in each 
city. However, we analyzed more samples than the 
Epitools-defined quantity in all centers during all pe-
riods. The study was approved by the Ethics Commit-
tee of Fundação HEMOMINAS (approval no. CAAE 
31087720.2.0000.5118). Data from all donors were col-
lected from the records of each blood donation center.

Sample Collection and Testing
We randomly selected samples collected for serologic 
screening (n = 7,854) in the 7 blood donation centers, 
aliquoted, and froze at −80°C until SARS-CoV-2 IgG 
testing was performed. We used the SARS-CoV-2 IgG 
Kit (Abbott, https://www.abbott.com), following the 
manufacturer’s instructions, to determine the IgG of 
the nucleocapsid protein of samples that tested posi-
tive or negative for SARS-CoV-2. Among the samples 
tested, we excluded 17 (0.2%) from the study because 
they corresponded to different donations from the 
same donors that were IgG positive for SARS-CoV-2. 
Testing results in different donations from the same 
donor (n = 17) always showed the same result. We 
only kept the first donation from each SARS-CoV-2 
IgG–positive repeat donor in the analysis.

Epidemic Model
Studies using dynamic models of COVID-19 epidem-
ics usually use compartmental models with SEIR struc-
tures (13). We propose a SEIR model that uses the same 
compartments defined by R. Li et al. (12), in which per-
sons are susceptible, exposed (those in the latent pe-
riod of infection), reported as infected (those that can 
propagate the virus and are reported in public health 
statistics), unreported infected, and removed (per-
sons who have either recovered and become immune, 

at least temporarily, or have died). In addition to the 
number of persons in each compartment, our model 
also defines the transmission rate, β, as a variable that 
changes with time, and differential equations describe 
the time evolution of variables (Appendix, https://
wwwnc.cdc.gov/EID/article/28/4/21-1961-App1.
pdf). Our version of the model does not yet consider 
vaccination or the possibility of reinfection. Vaccina-
tion could be included in our model by moving vac-
cinated persons to the removed compartment, but fur-
ther studies on the loss of immunity in both recovered 
and vaccinated persons are needed to elucidate useful-
ness of the model for longer timeframes. Other issues 
that could be studied include the response of serology 
tests in detecting vaccine antibodies and the effect of 
IgG waning in test results. 

Our model has 2 parameters that are mainly bio-
logically determined: the average time a person stays 
in the compartment of exposed before changing to 
infected and the average duration of infection. Other 
parameters depend on both biologic and social factors.

Most studies related to the dynamic modeling of 
COVID-19 epidemics consider either a constant or a 
piecewise constant, β, that changes as governments 
enact or remove social distancing and other contain-
ment measures (14). However, the actual dynamics of 
COVID-19 epidemics vary faster due to the shifting re-
sponse of populations to virus containment measures. 
In this study, we assumed that β has a daily value, 
which we estimated by minimizing the error between 
the number of reported infected persons delivered by 
the model and the number of infected persons report-
ed by public health services. This assumption creates 
an implicit feedback loop that forces the model’s in-
ternal variables to adapt to mirror the corresponding 
real hidden variables of the epidemic process. A model 
capable of delivering estimates of hidden internal vari-
ables of a system is called a state observer (13,15).

After β is estimated, the remaining model param-
eter to be found is the fraction (α) of infected persons 
detected by testing and becoming reported cases. This 
value is determined by comparing the accumulated 
number of reported cases with the accumulated inci-
dence indicated by seroprevalence in blood donors.

We assessed our proposed method by using data 
of apparent COVID-19 lethality (deaths divided by 
reported cases). We were able to determine apparent 
lethality because the testing policy used in the state 
of Minas Gerais defined patients’ COVID-19 testing 
eligibility on the basis of severity of symptoms. These 
criteria were very restrictive at first and were relaxed 
after the testing infrastructure was expanded in July 
2020. Therefore, α changed from one fixed value to 
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another fixed value, leading to a change in the ap-
parent lethality by the same factor of the change in 
α. Because the data relative to deaths, reported cases, 
and incidence in blood donor samples are mutually 
independent, our proposed model could be assessed 
by checking its simultaneous compatibility with these 
data in all cities. For this purpose, we used the appar-
ent lethality to infer α instead of using the proportion 
between the accumulated number of reported cases 
and incidence in blood samples.

Statistical Analysis
We calculated the number of occurrences of each out-
come and the frequencies for categorical variables. We 
made comparisons by using the Fisher exact test. We 
calculated the median and interquartile range (IQR) 
for continuous variables and performed comparisons 
by using 2-sided Mann-Whitney tests. We calculated 
all tests and confidence intervals at 95%. We esti-
mated the proportion of positive IgG tests for each 
blood donation center by aggregating the number of 
tests and positive results each month after remov-
ing repeat donors who had positive tests recorded in 
previous visits. We used Epitool (Ausvet) to calculate 
the unadjusted and test-adjusted seroprevalence for 
sensitivity (90%) and specificity (99%) (16,17), using 
Wilson’s CI for apparent prevalence and Blaker’s CI 
for true prevalence.

Results

SARS-CoV-2 IgG Seroprevalence among Blood Donors
Our study included data from 7,837 donors who gave 
blood at 7 donation centers in Brazil during March 
1–December 31, 2020. The total number of samples 
included in the study represents 6.4% of all blood 
donations in the selected centers during the study 

period. Serologic testing to identify SARS-CoV-2 IgG 
revealed 441 (5.63%) positive blood donors during 
the study period. When adjusted for sensitivity and 
specificity of the test, the overall rate of positivity was 
5.20% (95% CI 4.65%–5.80%). Male donors had 1.35 
(95% CI 1.12–1.63) times the odds of being seroposi-
tive than did female donors. The type of donor (first-
time vs. repeat donor) did not represent a statistically 
significant difference between groups who were posi-
tive or negative for SARS-CoV-2 IgG. Age also was 
not a statistically significant difference, either across 
age groups after adjusting for multiple hypotheses 
tests using the Holm correction or when regressing 
the rate of positivity on age by using simple linear 
regression (Table). We calculated the evolving serop-
revalence over all months of 2020 in each blood center 
and its geographic location in Minas Gerais (Figure 
1). In most blood centers, the increase in seropreva-
lence rates was slower in the first months, accelerated 
in August, but became faster during October (Appen-
dix Table).

Modeling SARS-CoV-2 Infection among the  
General Population
We used the seroprevalence rates of SARS-CoV-2 IgG 
among blood donors to infer the proportion of per-
sons in the general population infected in the 7 cit-
ies’ blood centers, according to the statistical model 
established. We chose the α parameter so that the 
accumulated incidence rate delivered by the model, 
including the reported and unreported cases, fits the 
prevalence of COVID-19 in the blood donors in each 
blood center for each month.

Model Assessment
The evolution of apparent lethality of COVID-19 
(deaths divided by reported cases) in the cities that 

 
Table. Characteristics and severe acute respiratory syndrome coronavirus 2 IgG seroprevalence among blood donors, Brazil, March–
December 2020 

Characteristics 
Total 

samples 
Positive 
samples 

Unadjusted seroprevalence, 
% (95% CI) 

Test-adjusted 
seroprevalence, % (95% CI)* Odds ratio (95% CI) 

Total 7,837 441 5.6 (5.1–6.2) 5.2 (4.7–5.8)  
Sex      
 M 4,284 273 6.4 (5.7–7.1) 6.0 (5.3–6.9) 1.4 (1.1–1.6) 
 F 3,553 168 4.7 (4.1–5.5) 4.2 (3.5–5.0) 
Age range, y      
 16–30 2,895 153 5.3 (4.5–6.2) 4.8 (4.0–5.8)  
 31–40 2,330 135 5.8 (4.9–6.8) 5.4 (4.4–6.5) 
 41–50 1,701 115 6.8 (5.7–8.1) 6.5 (5.3–7.9) 
 51–60 829 32 3.9 (2.8–5.4) 3.2 (2.0–4.9) 
 61–70 82 6 7.3 (3.4–15.1) 7.1 (2.7–15.8) 
Donor type      
 First-time donor 1,483 72 4.9 (3.9–6.1) 4.3 (3.2–5.7) 0.8 (0.7–1.1) 
 Repeat donor 6,353 369 5.8 (5.3–6.4) 5.4 (4.8–6.1) 
*Considering sensitivity of 90% and specificity of 99%. Analysis performed by Epitool by using Wilson’s confidence interval for apparent rate of positivity 
and Blaker’s CI for true rate of positivity. 
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host blood centers (except Uberlândia) suggests that 
the proportion of infected persons tested changed 
around day 122, July 16, and increased by nearly 70% 
(Figure 2). That date coincides with the time when ad-
ditional laboratories were integrated into the testing 
infrastructure for SARS-CoV-2 provided by the state 
government. In the case of Uberlândia, the munici-
pality provided a relevant testing infrastructure in 
addition to the infrastructure provided by the state 
government in all other cities. Those data provide in-
dependent information about the relative changes in 
the value of α, which can be used for assessing the 
model consistency.

We performed this assessment by running the 
model with α taking the same value in all cities ex-
cept Uberlândia, assuming a fixed value that we 
increased by 70% at day 122 (July 16; t = 122 days) 
and that remained fixed on this new value from July 
16–December 31. We determined the initial value of 
α that enabled the best fitting of the observed IgG 
rates of positivity in the blood centers was 0.18 for 
the proportion of reported cases up to t = 122 days 
and was 0.31 for t>122 days in Belo Horizonte, Gover-
nador Valadares, Juiz de Fora, Montes Claros, Pouso 
Alegre, and Uberaba. For Uberlândia, we found the 
values were 0.37 for t<122 and 0.41 for t>122.

Figure 1. Temporal evolving cumulative severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) seroprevalence in 
HEMOMINAS Foundation blood donation centers in 7 cities of Minas Gerais, Brazil, March–December 2020. A) March; B) June; C) 
September; D) December. Data represent SARS-CoV-2 IgG seropositivity among persons eligible to donate blood. Scale bar represents 
cumulative proportion of SARS-CoV-2 IgG seropositivity per 100,000 population. Gov., Governador. 
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We superimposed the seroprevalences in the 
blood centers each month onto the estimated curves 
of accumulated number of cases (reported and un-
reported) as predicted by the model in the respec-
tive cities (Figure 3). In 5 cities (Belo Horizonte, Juiz 
de Fora, Montes Claros, Uberlândia, and Uberaba),  
these parameter values resulted in reasonable match-
es with almost all data points. In 2 cities, Governador 
Valadares and Pouso Alegre, the seroprevalence data 
in the last period (October–December) were not well-
adjusted to the model, suggesting that the pattern of 
variation of α in those cities could be different from 
the variations in other cities. However, because Gov-
ernador Valadares and Pouso Alegre are small cities, a 
separate analysis of the change in the apparent lethal-
ity is not possible, which prevents the possibility of 
applying the same methodology for refining the esti-
mates when comparing cities of varying populations.

Discussion
In this study, we evaluated the rate of blood donors 
who tested positive for SARS-CoV-2 IgG and donat-
ed blood in 7 cities in Minas Gerais, Brazil, during 
March–December 2020. We used the data to estimate 
the rate of infection in the general population, then 
used the infection rate in a dynamic model with a 
SEIR structure.

The higher rate of IgG positivity found in male do-
nors (6.4% vs. 4.7% for female donors) in our study did 

not agree with the reported COVID-19 cases in Minas 
Gerais during the same period (49.2% for male vs. 50.8% 
for female persons). The higher proportion of positive 
tests among male donors suggests that the epidemiolog-
ic profile of infection might change when more persons 
with asymptomatic or mild COVID-19 are tested, such 
as expected for blood donors. The rate of positivity as-
sociated with sex has been previously observed (18), but 
different works did not identify this association in blood 
donors (19–21) or in the general population (22).

Concerning differences of positivity between age 
groups, we found no statistically significant difference 
in this study. Differences in positivity between age 
groups is a controversial issue; some studies report 
higher seroprevalence in younger persons (19,23), 
but other studies indicate greater seroprevalence in 
older persons (24) or do not find statistically signifi-
cant associations between seroprevalence and age 
(25). A study conducted in 133 cities in Brazil found 
that persons 20–59 years of age, an age group that 
corresponds to most blood donors included in this 
study, were more likely to be infected (26). The dif-
ferences between studies might be partly explained 
by cultural and population issues, making it difficult 
to consolidate a general conclusion. Loss of statistical 
power resulting from corrections for testing multiple 
hypotheses might also play a role in the observed dif-
ferences not achieving statistical significance, particu-
larly if the effect size is moderate.

Figure 2. Apparent lethality of coronavirus disease (COVID-19) in 6 cities (Belo Horizonte, Pouso Alegre, Montes Claros, Juiz de Fora, 
Governador Valadares, and Uberaba), Minas Gerais State, Brazil, April–December 2020. Gray shading and gray data line indicate 
the beginning of the COVID-19 epidemic in Minas Gerais, days 1–60, in which few cases were reported and the testing infrastructure 
was still being organized. Red data line indicates days 61–290 of the epidemic. Our model predicted the apparent lethality during days 
60–120 to be nearly 5.2% and to fall during days 121–290 to nearly 3.0% (gray horizontal lines). This change corresponds to a nearly 
70% increase in the value of α in our model (proportion of infected persons that are reported), assuming that the actual lethality has 
not changed. We did not include data from the city of Uberlândia in this estimation due to local legislation regulating COVID-19 testing, 
which resulted in a much larger proportion of people being tested in that municipality than in the other cities. Markings for each month 
represent the first day of the month.
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Seroprevalence in the blood donation centers 
showed the proportion of positive donors increased 
slowly in the first 6 months, and higher proportions 
of positivity were recorded from August onward, 
with regional variations. In Minas Gerais, COVID-19 
cases increased in June, peaked in August, decreased 
slowly until October, and then reached the highest 
numbers in December 2020. Our results agree with 
this scenario, suggesting that seroprevalence rates 
in blood donors correlated with reported COVID-19 

case rates. A crucial feature of the rate of positivity in-
dicated by serologic testing in the blood centers is that 
seroprevalence is much greater than prevalence that 
would be obtained by the accumulated number of re-
ported COVID-19 cases. However, we expected this 
difference because of underreporting. Notwithstand-
ing, public communication about COVID-19 epidem-
ics is commonly articulated on the basis of reported 
cases in the community, which strongly underesti-
mates the actual spread of the disease. This difference 

Figure 3. Proportion of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) IgG–positive results among blood donors in 
blood donation centers in 7 cities in Minas Gerais, Brazil, March–December 2020. A) Belo Horizonte; B) Governador Valadares; C) 
Juiz de Fora; D) Montes Claros; E) Pouso Alegre; F) Uberaba; G) Uberlândia. Blue dots indicate proportion of SARS-CoV-2–positive 
donors at the end each month; vertical blue lines indicate 95% CIs. Black squares indicate the official cumulative prevalence of reported 
coronavirus disease cases for each city. Red lines represent model estimates of the number of infected persons, including reported and 
unreported cases, in each city, as a proportion of the city’s population. Vertical dashed lines indicate national holidays.
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underscores the convenience of using a model-based 
approach, as we propose, because it enables the use of 
measured data for estimating hidden variables, such 
as the total number of infected persons.

Although all the cities we evaluated had increased 
COVID-19 positivity rates in December 2020, Gover-
nador Valadares had the highest rates. This finding 
is in consonance with the fact that Governador Va-
ladares had a higher accumulated COVID-19 inci-
dence, 4,227.8 cases/100,000 population, than was seen 
in Minas Gerais (2,270.1 cases/100,000 population) 
and Brazil overall (3,383.6 cases/100,000 population).  
Governador Valadares also had a higher COVID-19 
mortality rate, 143 deaths/100,000 population, than 
Minas Gerais (51.3 deaths/100,000 population) or Bra-
zil (88 deaths/100,000 population).

Several countries are implementing serial SARS-
CoV-2 serologic surveillance studies by using blood 
donors (19,23,27). These studies provide relevant re-
sults to complement population seroprevalence data 
(19) and valuable information for decision-making 
in countries where such data are not available. How-
ever, some issues should be considered, including 
the appropriate test to assess seroprevalence and 
the threshold for identifying positive and negative 
samples. Of note, the automated serologic tests that 
are available were validated by using samples from 
symptomatic COVID-19 patients with a confirmed 
diagnosis by reverse transcription PCR (E.W. Eyre 
et al., unpub. data, https://doi.org/10.1101/2020
.07.21.20159038). Results obtained in other studies 
using the same chemiluminescence test indicated a 
lower sensitivity to detect SARS-CoV-2 IgG in new-
ly infected persons (28), which might affect the ex-
trapolation of seroprevalence data to the population 
when using blood donors’ samples (11,29). These 
data reinforce the need for choosing serologic assays 
with high sensitivity, specificity, and durable anti-
body detection, even months after infection (30; M.  
Stone et al., unpub. data, https://doi.org/10.1101/ 
2021.09.04.21262414).

Blood donor–based estimates of SARS-CoV-2 se-
roprevalence might deviate from the seroprevalence in 
the general population for several reasons, including 
the exclusion of populations who cannot donate blood, 
such as persons <16 and >70 years of age and residents 
of nursing homes and prisons. The proportion of dif-
ferent groups (e.g., male and female donors, or dif-
ferent age groups) represented in the samples might 
differ from their respective proportions in population. 
In addition, recruitment and eligibility criteria for 
blood donations recommended by the Brazil Ministry 
of Health during the COVID-19 pandemic excluded  

asymptomatic candidates who had contact with infect-
ed persons <30 days before going to a donation center; 
those donors had to wait 14 days from the date they 
were first seen at the blood center before they could 
donate. The recommendation also excluded potential 
blood donors who had a COVID-19 diagnosis until 
>30 days after their symptoms disappeared (31). Such 
guidelines might result in decreased SARS-CoV-2 IgG 
seropositivity rates among blood donors.

The results of our study comparing prevalence 
estimates obtained using the SEIR model with actual 
health system notification data suggest that blood 
donor serosurveillance data can provide valuable 
information for monitoring the epidemic and evalu-
ating the effectiveness of measures to fight the virus 
spread in the cities that have blood donation centers. 
Our study also showed that the evolution of the epi-
demic can be considerably different from city to city, 
even considering cities within the same state in Bra-
zil, suggesting that the application of the proposed 
SEIR model in other cities would require some strat-
egy of periodic collection of blood samples for sero-
logic analysis from a sufficient number of persons 
spread across the population.

Some aspects of the proposed modeling ap-
proach should be highlighted. First, the procedure 
for estimating the time-varying transmission rate β 
for the SEIR model enables a reasonable automatic 
estimation of that parameter, thus circumventing a 
major difficulty in COVID-19 modeling (12,14). As 
a byproduct, this procedure also eliminates the dif-
ficulty usually encountered in determining adequate 
initial conditions. In fact, the SEIR model, once en-
dowed with the estimation procedure for β, becomes 
equivalent to a state observer model (13,15), produc-
ing estimates of the model’s hidden variables that 
will approximate the real unmeasured variables, 
regardless of initial conditions, provided that the 
model parameters are reasonable approximations of 
the actual parameters.

The estimated hidden variables might be quite use-
ful in practice. For instance, β(t) provides information 
that is not contained in the reproduction number, Rt, 
because β(t) does not vary with the number of recov-
ered persons, representing a better descriptor of social 
isolation intensity. Perhaps counterintuitively, the cu-
mulative incidence estimate provided by the model can 
be considered more reliable than the monthly point es-
timates derived from raw data of serologic analysis in 
blood centers because the model performs a filtering of 
the random variation in data that results from sampling.

Concerning assessment of the proposed mod-
el, users could choose different values for the α  
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parameter for each city and for each month, accord-
ing to the outcomes of serologic tests in the respec-
tive blood donation centers. Thus, the accumulated 
incidence of cases estimated by the model would be 
forced to follow the trajectory of serology results, 
which would not confirm the model validity. The 
procedure of model assessment we adopted used the 
same trajectories for α in 6 cities and got the changes 
in α from an independent source. The consistency 
of the model outcomes with the serology results in 
most of data points, considering cities with rather 
different trajectories of the epidemics, provides cor-
roboration of our proposed model.

The first limitation of our study is that the strati-
fication of the blood donors by sex or by age would 
enable the correction of the seroprevalence estimates 
according to the demographic composition of the 
general population, leading to more precise results. 
As we observed (Figure 3), the prevalence in some 
cities showed a systematic tendency to remain be-
low the values predicted by the model in the last 3 
months, which also suggests that a relevant process 
of seroconversion might exist as IgG wanes. Model-
ing of such a decay process might help provide the 
correct interpretation of data in the last months of 
our experiment. Finally, some of the blood donation 
centers considered in this study are relatively small 
(Pouso Alegre and Uberaba), which increases the un-
certainty associated with the data collected in those 
centers, not only by reducing the sample size, but also 
by reducing the robustness to skewed data.

In conclusion, the results of our study suggest 
that blood donation centers could be incorporated into  
COVID-19 surveillance systems with the role of regu-
larly providing quantitative estimates of SARS-CoV-2 
seroprevalence in the population. For this purpose, pub-
lic health agencies should use an epidemic model with a 
state observer property, which performs a track of some 
measured variable and produces outputs that converge 
to the system’s hidden variables. Thus, we propose 
a specific SEIR epidemic model that performs the ad-
justment of the transmission rate β such that the model 
tracks the measured number of reported COVID-19 
cases. Our model used seroprevalence data collected in 
blood centers to adjust the proportion of reported cases 
considered. This model provided consistent estimates 
of relevant variables that otherwise would not be acces-
sible, thus supporting a well-informed decision-making 
process. The methods we propose can be adapted for 
surveillance of other infectious diseases by using other 
kinds of input information from sentinel surveillance 
systems combined with serosurveillance data gathered 
in blood donation centers.
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Appendix 

Epidemic Dynamic Model 

Most studies that present dynamic models of COVID-19 epidemics use compartmental 

models with susceptible-exposed-infected-removed (SEIR) structure. This model structure is a 

variation of the traditional susceptible-infected-removed (SIR) model, with the inclusion of a 

compartment for Exposed persons, which accounts for the latent period of the infection. A key 

parameter in those models is the transmission rate, β, which aggregates the effects of some social 

behaviors in a population such as the mean number of interpersonal contacts of cases, the 

strength of protection measures in contact situations (for instance, use of facemasks, physical 

distancing during a contact, and others) and the selective isolation of persons with symptoms, 

and also the relevant biologic features that determine the ability of the virus to be transmitted 

when a contact occurs, for instance the mean exhaled viral load, the viral pathogenic 

mechanisms, and others. 

Equation 1 

Our study uses a model that follows the SEIR structure: 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= –
𝛽𝛽
𝑁𝑁
𝑑𝑑(𝐼𝐼𝑟𝑟 +  𝐼𝐼𝑛𝑛) 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

=  
𝛽𝛽
𝑁𝑁
𝑑𝑑(𝐼𝐼𝑟𝑟 + 𝐼𝐼𝑛𝑛) –

1
𝑍𝑍
𝑑𝑑 

𝑑𝑑𝐼𝐼𝑟𝑟

𝑑𝑑𝑑𝑑
=  
∝
𝑍𝑍
𝑑𝑑 −  

1
𝐷𝐷
𝐼𝐼𝑟𝑟 

𝑑𝑑𝐼𝐼𝑛𝑛

𝑑𝑑𝑑𝑑
=  

(1− ∝)
𝑍𝑍

𝑑𝑑 −  
1
𝐷𝐷
𝐼𝐼𝑛𝑛 
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𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

=  
1
𝐷𝐷

(𝐼𝐼𝑟𝑟 + 𝐼𝐼𝑛𝑛) 

This model is like the one used by Li et al. (1). In this model, the compartment S(t) 

represents the number of susceptible persons in population, E(t) represents the number of 

exposed persons (the persons that are in the latent period of infection, in which they are not able 

to propagate the virus yet), Ir(t) represents the number of infected persons (persons who will 

propagate the virus if they contact a susceptible person) that have been reported in public health 

statistics, and In(t) represents the number of infected persons that have not been reported. The 

compartment R(t) represents removed persons (persons that have recovered from the disease and 

consequently have become immune, at least temporarily, or who have died). In this equation, N 

represents the initial number of persons in the population. In addition, equation 2 performs the 

computation of the cumulative number of reported infected persons, represented by Cr:  

Equation 2 

𝑑𝑑𝐶𝐶𝑟𝑟

𝑑𝑑𝑑𝑑
 = ∝ 𝐸𝐸

𝑍𝑍
 

Equation 1 has some parameters that are mainly biologically determined. For instance, 

Z = 3.69 (the average time a person stays in the compartment of exposed persons before 

becoming infected) and D = 7.0 (the average duration of infection).  

Most published studies concerning the dynamic modeling of COVID-19 epidemics either 

consider a constant value of β or a piecewise constant value, which changes as social distancing 

measures are changed by governments. However, the actual dynamics of COVID-19 epidemics 

varies in a much faster way, due to the varying response of populations to virus containment 

measures as can be inferred from the growth of infection rates just after holidays or other dates 

of social events. In addition to β, the α parameter also depends on social factors, representing the 

fraction of infected persons that are detected by testing and become reported cases. 

Thus, for performing a simulation of an actual scenario, estimates for the values of β and 

α are necessary, as are estimates for the initial values of all model variables, S(0), E(0), Ir(0), 

In(0), R(0). We addressed the issues related to the assignment of values to those parameters and 

modified the model in equation 1 to transform it to a state observer, as described below. This 

transformation endowed the model with the capability to auto-adapt to parameter changes while 
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performing a fitting of the accumulated number of reported cases, Cr, represented in the model, 

to the corresponding number reported by the public health services. 

State Observer for the Epidemic Dynamic Model 

State observers are crucial tools that have been developed for monitoring the internal 

variables of dynamic systems, usually for the purpose of assisting the system control. These tools 

have many reported applications, mainly in the monitoring and control of complex technological 

systems, such as in aerospace artifacts, and the chemical industry, among others. Here we offer a 

general discussion of the idea of state observers. Then, we show the specific state observer that 

we developed in this study for the monitoring of epidemic processes. 

Equation 3 

Consider a dynamic system described by the following system of differential equations: 

�̇�𝑥 = 𝑓𝑓(𝑥𝑥)  

𝑦𝑦 = 𝑔𝑔(𝑥𝑥)  

In this system, 𝑓𝑓(·) represents the system dynamic function, 𝑔𝑔(·) represents the output 

measurement function, the vector 𝑥𝑥 ∈  𝑑𝑑𝑛𝑛 represents the system internal variables (the system 

states), and the vector 𝑦𝑦 ∈  𝑑𝑑𝑚𝑚 represents the vector of signals that are directly measured on the 

system. State observers are models that represent dynamic systems that are intended to provide 

estimates of the system internal signals. We assumed that the exact representation of the system, 

as described in equation 3, is not available to the analyst. 

Equation 4 

A state observer for the system in equation 3 can be represented as: 

𝑥𝑥�̇ = 𝑓𝑓(𝑥𝑥�, �̂�𝑒)  

𝑦𝑦� = 𝑔𝑔�(𝑥𝑥�) 

�̂�𝑒 = 𝑦𝑦� − 𝑦𝑦 

In this equation, the functions fˆ(·) and 𝑔𝑔�(·) are approximated representations of functions 

f(·) and 𝑔𝑔(·), 𝑥𝑥� represents the vector of estimates of the system internal variables, 𝑦𝑦� represents 

the estimate of output measurement vector, and �̂�𝑒 is the error between the estimated output 
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vector 𝑦𝑦� and the actual measurement vector y. The working principle of the state observers is that 

the error signal e is fed back into the observer, with this feedback loop designed such that the 

difference between the system state vector x and the estimate 𝑥𝑥� of the state vector provided by 

the observer converges to zero. After this convergence, the state observer provides estimates of 

all system signals, including the system internal signals that are not measured directly. The exact 

convergence can be achieved when 𝑓𝑓 = f and 𝑔𝑔� = 𝑔𝑔. When the differences between the model (𝑓𝑓, 

𝑔𝑔�) represented in the observer and the actual system dynamics (f,g) are small, the observer state 

vector, 𝑥𝑥�, is expected to represent a good estimate of the system internal variables, 𝑥𝑥. 

Equation 5 

Most of the state observers that have been studied until recently use an additive feedback 

of the measurement error, which makes the observer dynamic equation become: 

𝑥𝑥�̇ = 𝑓𝑓(𝑥𝑥�) + 𝐾𝐾�̂�𝑒 

in which K ∈  𝑑𝑑𝑛𝑛×𝑚𝑚 is a matrix of constant feedback coefficients. 

The feedback structure in equation 5 has been used in some published works that propose 

state observers for SIR-like epidemic models (2,3). A main drawback of those approaches is that 

they depend on the function 𝑓𝑓(·) being a reasonable approximation of the function 𝑓𝑓(·) in the 

actual system. As we discussed, in the case of COVID-19, the parameter β presents strong and 

fast variations, which makes the use of those observers difficult because they could be used for 

very short time horizons in which estimates of β could be considered reasonable approximations 

of the actual disease transmission rate. In addition, those observers would have no role in the 

estimation of β values, thus failing to provide the estimate of the variable that would likely be the 

most crucial. 

In our work, we offer a new structure of state observer for SIR-like models in which the 

infection transmission rate β continuously varies along the timeline. In the proposed technique, 

the actual accumulated number of COVID-19 cases, Cr, is measured as reported by public health 

services, and the error between this number and the number Ĉr estimated by the observer is 

calculated. This error is fed back to the estimator in a rather unusual way. First, we assumed that 

β is a time-varying parameter, which becomes represented by 𝛽𝛽(𝑑𝑑). We run an optimization 

procedure, searching for a time-varying estimate �̂�𝛽(𝑑𝑑) that minimizes that error on each day. 
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When we find the optimal sequence �̂�𝛽∗(𝑑𝑑), the estimates of the other system internal variables 

appear as byproducts of the optimization procedure that result from the simulation of the model 

with optimal values of the transmission rate. More specifically, the following cost function is 

defined in Equation 6 as: 

𝐽𝐽(�̂�𝛽,𝑘𝑘) =  � (log�𝐶𝐶𝑟𝑟(𝑖𝑖)� − log (
𝑘𝑘 + 𝑑𝑑

𝑖𝑖=𝑘𝑘−𝑑𝑑

�̂�𝐶𝑟𝑟(𝑖𝑖, �̂�𝛽)))2 

in which 𝐶𝐶𝑟𝑟(𝑖𝑖) represents the accumulated number of actual reported cases in the city on day i 

and �̂�𝐶𝑟𝑟(i,�̂�𝛽) represents the accumulated number of reported cases calculated by the model from 

time t = 1 to t = k, using 𝛽𝛽 = �̂�𝛽 in a time window of length 2d + 1 centered in t = k. 

Equation 7 

The estimated values of the daily disease transmission rate 𝛽𝛽∗(𝑑𝑑) are given by: 

β∗(t) = arg minβ J(β,t) 

subject to: {equation 1, equation 2 
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Appendix Table. SARS-CoV-2 IgG serology results and seroprevalence among blood donors from 7 cities, Minas Gerais, Brazil, 
2020* 

Mo. 

City 

Pouso Alegre Uberaba Juiz de Fora Belo Horizonte Montes Claros 
Governador 
Valadares Uberlândia 

– + % – + % – + % – + % – + % – + % – + % 
Mar 44 0 0 44 0 0 44 0 0 44 0 0 44 0 0 44 0 0 43 1 2.3 
Apr 44 0 0 42 2 4.6 44 0 0 44 0 0 44 0 0 44 0 0 44 0 0 
May 58 1 1.7 60 0 0 59 1 1.7 59 1 1.7 59 1 1.7 60 0 0 60 0 0 
Jun 65 0 0 64 1 1.5 64 0 0 156 2 1.3 50 0 0 63 2 3.1 70 0 0 
Jul 67 3 4.3 67 3 4.3 68 2 2.9 186 5 2.6 50 0 0 66 4 5.7 67 2 2.9 
Aug 76 1 1.3 51 1 1.9 83 4 4.6 189 12 6.0 60 2 3.2 97 4 4.0 64 2 3.0 
Sep 66 3 4.4 66 4 5.7 76 1 1.3 204 8 3.8 47 4 7.8 77 12 13.5 136 12 8.1 
Oct 95 3 3.1 99 3 2.9 111 4 3.5 157 9 5.4 53 8 13.1 126 11 8.0 219 30 12.1 
Nov 136 4 2.9 138 6 4.2 160 9 5.3 377 36 8.7 62 9 12.7 192 18 8.6 324 38 10.5 
Dec 188 7 3.6 196 17 8.0 222 21 8.6 369 35 8.7 103 12 10.4 274 30 9.9 372 30 7.5 
Total 839 22 2.6 827 37 4.3 931 42 4.3 1,785 108 5.7 572 36 5.9 1,043 81 7.2 1,399 115 7.6 
*SARS-CoV-2, severe acute respiratory syndrome coronavirus 2; –, negative; +, positive.  

 


