Genomic Sequencing of SARS-CoV-2 E484K Variant B.1.243.1, Arizona, USA

Appendix

Materials and Methods

Study Population

As part of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) genomic surveillance efforts, saliva samples submitted for COVID-19 testing to the Arizona State University's Biodesign Clinical Testing Laboratory (ABCTL) that tested positive (TaqPath COVID-19 Combo Kit, Applied Biosystems, https://www.thermofisher.com) were randomly selected for next-generation sequencing (1). Samples covered a broad distribution from counties across Arizona, United States. The Arizona State University Institutional Review Board approved this study.

SARS-CoV-2 Sequencing

RNA was extracted from 250 µL of saliva sample (KingFisher Flex, Thermo Scientific) according to the manufacturer's guidelines. First-strand cDNA synthesis was performed using random hexamers (SuperScript III/IV reverse transcription; Life Technologies, https://www.thermofisher.com), followed by PCR amplification of tiled amplicons spanning the SARS-CoV-2 genome (Swift Normalase Amplicon Panel; Swift Biosciences, https://swiftbiosci.com) and library construction. Libraries were sequenced on the Illumina MiSeq (version 2, 2×150; https://www.illumina.com) and NextSeq 500 (version 2.5, 2×150, mid or high output).

Sequencing Analysis

Illumina sequencing reads were quality filtered to remove adaptors and low-quality bases using BBTools (https://jgi.doe.gov/data-and-tools/bbtools). High-quality-filtered reads were mapped to the SARS-CoV-2 Wuhan1 reference genome (NC_045512.2) using BWA-MEM (H. Li, unpub. data, https://arxiv.org/abs/1303.3997) and amplicon primers were trimmed using

Primerclip version 0.3.8 (2). Consensus sequences were called using iVar (version 1.0; parameters -q 20, -t 0.75, -m 20, -n N) (3). Lineages were assigned using pangolin version 2.3.8 (4). Sequence alignments were performed with MAFFT version 7.471 (5) and variant calling using Geneious Prime version 2021 (https://www.geneious.com). High-quality complete genomes were defined as genomes >29,000 bp in length with <50% ambiguities. Sequences used in phylogenetic analysis include the global nextregions sequences from GISAID (6) subset to 500 randomly selected sequences and a random subset of 100 B.1.243 sequences from all B.1.243 GISAID sequences using the augur filter command (–no-probabilistic-sampling) from NextStrain (https://docs.nextstrain.org), and the 24 B.1.243.1 lineage sequences. Phylogenetic reconstruction was performed with IQTree version 2.0.3 (7), iqtree -nt AUTO -bb 1000 -m MFP -mset GTR, and Augur version 11.3.0 (8).

Data Availability

Sequence data have been deposited in GISAID.

References

- Holland LA, Kaelin EA, Maqsood R, Estifanos B, Wu LI, Varsani A, et al. An 81-nucleotide deletion in SARS-CoV-2 ORF7a identified from sentinel surveillance in Arizona (January to March 2020). J Virol. 2020;94:e00711-20. <u>PubMed https://doi.org/10.1128/JVI.00711-20</u>
- 2. Swift. primerclip. 2021 [cited 2021 Jul 22]. https://github.com/swiftbiosciences/primerclip
- Grubaugh ND, Gangavarapu K, Quick J, Matteson NL, De Jesus JG, Main BJ, et al. An ampliconbased sequencing framework for accurately measuring intrahost virus diversity using PrimalSeq and iVar. Genome Biol. 2019;20:8. <u>PubMed https://doi.org/10.1186/s13059-018-1618-7</u>
- O'Toole A, Scher E, Underwood A, Jakcson B, Hill V, McCrone JT, et al. pangolin. [cited 2021 Jul 22]. https://github.com/cov-lineages/pangolin
- 5. Katoh K, Misawa K, Kuma K, Miyata T. MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res. 2002;30:3059–66. <u>PubMed</u> <u>https://doi.org/10.1093/nar/gkf436</u>
- 6. Elbe S, Buckland-Merrett G. Data, disease, and diplomacy: GISAID's innovative contribution to global health. Glob Chall. 2017;1:33–46. <u>PubMed https://doi.org/10.1002/gch2.1018</u>

- 7. Minh BQ, Schmidt HA, Chernomor O, Schrempf D, Woodhams MD, von Haeseler A, et al. IQ-TREE
 2: new models and efficient methods for phylogenetic inference in the genomic era. Mol Biol Evol. 2020;37:1530–4. <u>PubMed https://doi.org/10.1093/molbev/msaa015</u>
- Huddleston J, Hadfield J, Sibley TR, Lee J, Fay K, Ilcisin M, et al. Augur: a bioinformatics toolkit for phylogenetic analyses of human pathogens. J Open Source Softw. 2021;6:2906. <u>PubMed</u> <u>https://doi.org/10.21105/joss.02906</u>

Lineage	Count	Lineage	Count	Lineage	Count
A.2.4	1	B.1.177	1	B.1.429	289
A.2.5	1	B.1.189	3	B.1.517	1
В	2	B.1.2	327	B.1.526	7
B.1	86	B.1.232	3	B.1.526.1	2
B.1.1	11	B.1.234	13	B.1.526.2	4
B.1.1.1	3	B.1.239	8	B.1.551	12
B.1.1.142	1	B.1.240	2	B.1.561	12
B.1.1.207	1	B.1.241	1	B.1.564	1
B.1.1.222	12	B.1.243	50	B.1.567	1
B.1.1.231	1	B.1.243.1	1	B.1.568	3
B.1.1.239	1	B.1.265	1	B.1.575	1
B.1.1.28	1	B.1.311	11	B.1.577	1
B.1.1.316	6	B.1.336	2	B.1.582	1
B.1.1.318	2	B.1.346	1	B.1.595	3
B.1.1.322	1	B.1.351	1	B.1.596	49
B.1.1.348	3	B.1.369	2	B.1.609	11
B.1.1.416	1	B.1.375	2	B.1.612	1
B.1.1.432	3	B.1.378	1	B.1.617.2	1
B.1.1.519	64	B.1.396	2	B.1.81	1
B.1.1.7	336	B.1.400	6	C.13	1
B.1.111	1	B.1.404	12	P.1	5
B.1.153	2	B.1.423	1	P.2	8
B.1.160	1	B.1.427	127	R.1	4

Appendix Table 1. SARS-CoV-2 lineages found in general surveillance sequencing of 1,538 positive samples, Arizona*

*SARS-CoV-2, severe acute respiratory syndrome coronavirus 2.

Appendix Table 2. B.1.243.1 lineage	e-defining mutations in S	SARS-CoV-2 samples, Arizona*
-------------------------------------	---------------------------	------------------------------

			Number of B.1.243.1 genomes with
Gene	Nucleotide change	Amino acid change	mutation
ORF1ab	C4321T	Synonymous	24/24
ORF1ab	11288–11296 deletion	SGF 3675–3677 deletion	24/24
ORF1ab	C17999T	T5912I	24/24
ORF1ab	G19962T	Synonymous	24/24
S	T22200G	V213G	23/23†
S	G23012A	E484K	22/22†
Μ	C26873T	Synonymous	24/24
Μ	G27065A	Synonymous	24/24
Noncoding, upstream of N	28266 GCC insertion	Non-coding	24/24
N	C28603T	Synonymous	24/24
3' UTR	29750–29761 deletion	Non-coding	19/19†

* All genome positions in reference to the SARS-CoV-2 Wuhan-1 sequence (NC_045512.2). ORF, open reading frame; SARS-CoV-2, severe acute respiratory syndrome coronavirus 2.

†1 or more sequences omitted due to ambiguous (N) nucleotides or low coverage.

Appendix Table 3. Lineage-defining mutations in SARS-CoV-2 samples of parental B.1.243 lineage, Arizona

Gene	Nucleotide change	Amino acid change	% of B.1.243 genomes with mutation
5' UTR	C241T	Non-coding	98.0
ORF1ab	C3037T	Synonymous	99.4
ORF1ab	C14408T	P4715L	98.6
ORF1ab	A20268G	Synonymous	95.5
S	A23403G	D614G	100
S	T24076C	Synonymous	98.9
Ν	C28854T	S194L	97.9

*Based on 7,211 global B.1.243 genomes downloaded from GISAID on March 20, 2021. ORF, open reading frame; SARS-CoV-2, severe acute respiratory syndrome coronavirus 2.

Appendix Table 4. B.1.243.1 se	equences reported in stud	dy of SARS-CoV-2 mutations, Arizona*
--------------------------------	---------------------------	--------------------------------------

	GISAID accession			Collection	ORF1ab		
Name	no.	State	County	date	Ct	S C _t	N C _t
hCoV-19/USA/AZ-ASU2621/2021	EPI_ISL_1364812	Arizona	Pima	2021 Feb 1	26.2	26.3	26.8
hCoV-19/USA/AZ-ASU2625/2021	EPI_ISL_1364644	Arizona	Pima	2021 Feb 1	27.2	27.4	27.8
hCoV-19/USA/AZ-ASU2857/2021	EPI_ISL_1364649	Arizona	Pima	2021 Feb 3	23.1	23.1	22.7
hCoV-19/USA/AZ-CDC-	EPI_ISL_1090700	Arizona	NA	2021 Feb 5	NA	NA	NA
21801839/2021							
hCoV-19/USA/AZ-CDC-	EPI_ISL_1090853	Arizona	NA	2021 Feb 5	NA	NA	NA
21802041/2021							
hCoV-19/USA/AZ-CDC-	EPI_ISL_1139766	Arizona	NA	2021 Feb 13	NA	NA	NA
22062741/2021							
hCoV-19/USA/AZ-ASU2754/2021	EPI_ISL_1364775	Arizona	Maricopa	2021 Feb 13	14.7	14.8	14.9
hCoV-19/USA/AZ-ASU3758/2021	EPI_ISL_1592344	Arizona	Maricopa	2021 Feb 16	28.9	30	28.1
hCoV-19/USA/AZ-ASU3132/2021	EPI_ISL_1365543	Arizona	Maricopa	2021 Feb 17	20.7	20	21.2
hCoV-19/USA/AZ-ASU2925/2021	EPI_ISL_1365483	Arizona	Maricopa	2021 Feb 17	28	26.8	28
hCoV-19/USA/AZ-ASU3099/2021	EPI_ISL_1365622	Arizona	Maricopa	2021 Feb 17	24.1	23.2	24
hCoV-19/USA/TX-HMH-MCoV-	EPI_ISL_1303700	Texas	Harris	2021 Feb 24	NA	NA	NA
29140/2021							
hCoV-19/USA/AZ-ASU2540/2021	EPI_ISL_1291671	Arizona	Maricopa	2021 Feb 25	26	26.4	27
hCoV-19/USA/AZ-TG758899/2021	EPI_ISL_1292269	Arizona	Maricopa	2021 Feb 25	NA	NA	NA
hCoV-19/USA/AZ-TG758666/2021	EPI_ISL_1292117	Arizona	Maricopa	2021 Feb 25	NA	NA	NA
hCoV-19/USA/AZ-CDC-	EPI_ISL_1290985	Arizona	NA	2021 Feb 27	NA	NA	NA
22555310/2021							
hCoV-19/USA/AZ-TG759060/2021	EPI_ISL_1292381	Arizona	Maricopa	2021 Feb 28	NA	NA	NA
hCoV-19/USA/AZ-CDC-	EPI_ISL_1290992	Arizona	NA	2021 Mar 1	NA	NA	NA
22554229/2021							
hCoV-19/USA/AZ-TG761699/2021	EPI_ISL_1296905	Arizona	NA	2021 Mar 2	NA	NA	NA
hCoV-19/USA/NMDOH-	EPI_ISL_1340909	New	NA	2021 Mar 8	NA	NA	NA
2021075279/2021		Mexico					
hCoV-19/USA/AZ-TG787352/2021	EPI_ISL_1464762	Arizona	Maricopa	2021 Mar 12	NA	NA	NA
hCoV-19/USA/TX-CDC-	EPI_ISL_1479977	Texas	NA	2021 Mar 20	NA	NA	NA
QDX23213780							
hCoV-19/USA/AZ-CDC-	EPI_ISL_1525953	Arizona	NA	2021 Mar 21	NA	NA	NA
QDX23313079/2021	-						
hCoV-19/USA/AZ-CDC-	EPI_ISL_1999732	Arizona	NA	2021 Apr 14	NA	NA	NA
ASC210070999/2021							

*Ct, cycle threshold; NA, not available; ORF, open reading frame; SARS-CoV-2, severe acute respiratory syndrome coronavirus 2.

Appendix Figure 1. B.1.243.1 lineage-defining mutations on the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) genome. Mutations are shown in reference to the SARS-CoV-2 Wuhan-1 genome position (NC_045512.2). ORF, open reading frame.

Appendix Figure 2. Maximum-likelihood phylogeny of diverse SARS-CoV-2 sequences including 500 representative global sequences, 100 B.1.243 parent lineage sequences, and the 24 B.1.243.1 sequences we identified. The novel B.1.243.1 lineage is indicated in red branches (clade bootstrap support: 100), and the parental B.1.241 lineage in blue. Scale bar represents number of nucleotide substitutions per site.