Genomic Insight into the Spread of Meropenem-Resistant *Streptococcus pneumoniae* Spain^{23F}-ST81, Taiwan

Appendix 1

Appendix 1 Table 1. Prin	ners used in this study		
Primer name	Primer sequence $(5' \rightarrow 3')$	Purpose	Reference no.
pbp1a-F	CCAGCAACAGGTGAGAGTC	DCD	(1)
pbp1a-R	GTAAACACAAGCCAAGACAC	PCR	(1)
pbp2b-F	CCGTCTTAATCCCGATACC	DCD	(1)
pbp2b-R	ATTTTTGGGTGACTTGTTGAG	FOR	(1)
pbp2x-F	GGAATTGGTGTCCCGTAAGC	DCD	(1)
pbp2x-R	CATCTGCTGGCCTGTAATTTG	FCK	(1)
pbp1a-F2	CCWGTCCATACAGCCATWG	Soquencing	This study
pbp1a-R2	CTTCTCAGCAAGAAACCT	Sequencing	This study
pbp2b-F2	TATACTCTTTKGGWAYAA	Sequencing	This study
pbp2b-R2	CTGACTTATGTGAGCATC	Sequencing	This study
pbp2x-F2	ACGTGGGACTATTTATGAC	Sequencing	This study
pbp2x-R2	TTGGTAGAACCAACCAAG	Sequencing	This study
<i>ermB</i> -F	TGGTATTCCAAATGCGTAATG	PCR	(2)
<i>ermB</i> -R	CTGTGGTATGGCGGGTAAGT	1.610	(2)
<i>mef(A/E</i>)-F	CAATATGGGCAGGGCAAG	PCR	(2)
<i>mef(A/E</i>)-R	AAGCTGTTCCAATGCTACGG		(2)
cat-F	TTAGGYTATTGGGATAAGTTA	PCR	(3)
<i>cat</i> -R	CATGRTAACCATCACAWAC		(0)
<i>tetM</i> -F	GTGGACAAAGGTACAACGAG	PCR	(2)
<i>tetM</i> -R	CGGTAAAGTTCGTCACACAC		(-)
aphA3-F	TAAAAGATACGGAAGGAATGTCTC	PCR	(2)
aphA3-R	TCGACCGGACGCAGAAGGCAATGT		(-)
<i>int</i> -Tn916-F	GCGTGATTGTATCTCACT	PCR	(2)
i <i>nt</i> -Tn916-R	GACGCTCCTGTTGCTTCT		(=)
xis-Tn916-F	AAGCAGACTGAGATTCCTA	PCR	(2)
xis-Tn916-R	GCGTCCAATGTATCTATAA		(=)
tnpR-F	CCAAGGAGCTAAAGAGGTCCC	PCR	(2)
tnpR-R	GTCCCGAGTCCCATGGAAGC		(-)
tnpA-F	GCTTCCATGGGACTCGGGAC	PCR	(2)
tnpA-R	GCTCCCAATTAATAGGAGA		(-)
folA-F	TTGCCAGCAGAATTGCAGCA	PCR	(4)
folA-R	AAATAGGTATCTCCTTCCACC		()
toIP-F	GATGAATGCATCGTGTCCATC	PCR	(5)
folP-R	CCGTCCGGTAGTTAGCAATCC		(•)

Isolate name	Serotype	ST	Year	Accession no.
B1136	15C	83	2013	SRR8867345
B999-49	15B	83	2013	SRR8867344
B1300936	15C	83	2013	SRR8867343
1018-71	15B	83	2014	SRR8867342
1025-08	15B	83	2014	SRR8867349
1054-32	15C	83	2014	SRR8867348
B1675	15B	83	2016	SRR8867347
B0236	15B	83	2016	SRR8867346
1148-64	15C	83	2016	SRR8867351
1217-52	15B	83	2016	SRR8867350
K54	15B	83	2016	SRR8867360
K55	15B	83	2016	SRR8867359
B2581	15B	83	2017	SRR8867362
B5939	15B	83	2017	SRR8867361
B4505	15C	83	2017	SRR8867364
B1757	15C	83	2017	SRR8867363
B3127	15C	83	2017	SRR8867366
B2404	15B	83	2017	SRR8867365
B8812	15B	83	2017	SRR8867368
1244-61	15B	83	2017	SRR8867367
1267-33	15B	83	2017	SRR8867355
1276-72	15C	83	2017	SRR8867356
K72	15B	83	2017	SRR8867357
K110	15B	83	2017	SRR8867358
SSP102	23F	81	2003	SRR8867352
SSP47	23F	81	2002	SRR8867353
B2362	23F	81	2009	SRR8867354

Appendix 1 Table 2. Sequence Read Archive accession numbers used in this study*

*ST, sequence type. Sequence Read Archive, http://www.ncbi.nlm.nih.gov/sra.

MIC (mg/L)							PBP profile					
		-	Mero	penem		Penici	llin					
Serotype	ST no.	No. of isolates	0.5	<u>></u> 1	<u><</u> 0.06	<u><</u> 2	4	<u>></u> 8	PBP1a	PBP2b	PBP2x	no.
14	63	1	1	0	0	1	0	0	13	new1	43	1
	83	2	2	0	0	2	0	0	15	12	18	1
									60	16	143-like	1
	876	3	3	0	0	3	0	0	15	12	18	1
									60	16	143-like	2
	2652	3	3	0	0	3	0	0	15	31	7	1
		-	Ţ	-	-	•	-	•	15	31	18	2
	3652	1	1	0	0	1	0	0	15	31	18	1
	14312	1	1	0	0	1	0	0	60	16	143-liko	1
	14312	1	1	0	0	1	0	0	24	53	77	1
	14314	1	1	0	0	1	õ	0	60	16	143-like	1
	14315	1	1	Ő	0	1	õ	Ő	15	31	18	1
15A	63	13	12	1	0	11	2	õ	15	12	18	1
10/1	00	10		•	Ũ		-	Ū	13	new1	43	10
									13	new1	16	1
									13	new1-like	43-like	1
15B	83	16	8	8	0	15	1	0	15	12	18	16
15C	83	8	6	2	Ō	8	Ó	Ō	15	12	18	7
		-	•		-	•	-	•	15	12	36	1
	1712	1	1	0	0	1	0	0	16	21	19	1
	1/350	1	0	1	0	1	0	0	15	12	18	1
104	320	30	12	18	0	25	5	0	13	12	16	27
134	520	50	12	10	0	25	5	0	10	11	16 liko	21
									13	11		2
	070	4		0	0	4	~	0	13	11	16-IIKE-2	1
	8/6	1	1	0	0	1	0	0	60	16	143-IIKe	1
405	/122	1	0	1	0	1	0	0	13	11	16	1
19F	236	3	2	1	0	3	0	0	13	newi	47	1
									13	10	0	1
									60	16	20	1
	271	2	1	1	0	2	0	0	13	11	33	1
									13	16	47	1
	320	3	3	0	0	3	0	0	13	11	33	1
									13	11	16	1
									13	49-like	16	1
	1464	2	1	1	0	1	1	0	13	49-like	154-like	2
	12444	3	0	3	0	0	3	0	13	37	112-like	3
	14358	1	1	0	0	1	0	0	13	16	100-like	1
	14357	1	0	1	0	1	0	0	13	11-like	112-like-2	1
23A	166	3	2	1	0	3	0	0	15	11	36-like	3
	242	1	1	0	0	1	0	0	13	31	73	1
23F	81	1	1	0	0	1	0	0	15	12	18	1
	166	1	1	0	0	1	0	0	15	11	36-like	1
	242	2	2	0	0	2	0	0	13	31	73	1
				-	-		-	•	13	31	20	1
	1437	1	1	0	0	1	0	0	7	74-liko	new2	1
64	76	1	1	0	0	1	0	0	25-like	46	36	1
04	81	3	3	0	0	3	0	0	20 IIKC 15	12	18	3
6B	720	1	1	0	0	1	0	0	13-like	31-like	73-like	1
0B	8526	1	1	0	0	1	õ	0	34	11	8-like	1
Others	0020	I		0	Ū		Ū	0	04	••	0 like	
1	63	1	1	0	0	1	0	0	13	new1	43	1
15E	63	1	1	õ	Ő	1	õ	õ	13	new1	43	1
18F	81	1	0	1	ñ	1	õ	õ	15	12	18	1
11A	166	2	1	1	Ő	2	õ	õ	15	12	18	1
	.00	-	•	•	0	-	5	0	15	12	2.0 8	1
220	240	1	1	0	0	4	0	0	10	24	72	. 1
23D 1	242 559	1	1	0	0	1	0	0	13	31 7	13	1
4 25 A /C	0205	1	1	0	0	1	0	0	4 1	7	7	1
30A/U 12	9392	1	1	0	0	1	0	0	4 1	7	7	1
īΖ	3030	1	1	0	0	1	0	0	4	7	<i>i</i> 7	1
	12446	1	1	U	U	1	U	U	4	1	1	1
Lotal		125	84	41	0	113	12	0				

Appendix 1 Table 3. Multilocus sequence type (MLST) analysis and penicillin binding-protein (PBP) allelic profile of 125 meropenem-nonsusceptible pneumococcal isolates

Appendix 1 Table 4. Novel PBP1a transpeptidase domain sequences identified in this study

Sequences

SMKPITDYAPALEYGVYDSTASIVHDVPYNYPGTDTPLYNWDHVYFGNITIQYALQQSRNVTAVETLNKVGLDRAKTFLNGLGIDYP SMHYANAISSNTTESNKKYGASSEKMAAAYAAFANGGIYHKPMYINKIVFSDGSEKEFSDAGTRAMKETTAYMMTEMMKTVLTHGT GRGAYLPWLPQAGKTGTSNYTDEEIEKYIKNTGYVAPDEMFVGYTRKYSMAVWTGYSNRLTPIVGDGFLVAAKVYRSMMTYLSEG SNPEDWNIPEGLYRNGEFV

>25-like

AMKPITDYAPAIEYGVYDSTATMVNDIPYNYPGTSTPVYNWDRAYFGNITLQYALQQSRNVTAVETLNKVGLDRAKTFLNGLGIDYP SMHYANAISSNTTESNKQYGASSEKMAAAYAAFANGGIYHKPMYINKVVFSDGSEKEFSDVGTRAMKETTAYMMTEMMKTVLAYG TGRGAYLPWLAQAGKTGTSNYTDDEIEKHIKNTGYVAPDEMFVGYTRKYSMAVWTGYSNRLTPIVGDGFLVAAKVYRSMITYLSED THPEDWNIPEGLYRNGEFV

Appendix 1 Table 5. Novel PBP2b transpeptidase domain sequences identified in this study

Sequences

>31-like

TNVFVPGSVVKAATISSGWENGVLSGNQTLTDQPIVFQGSAPIYSWYKLAYGSFPITAVEALEYSSNAYMVQTALGIMGQTYQPNM FVGTSNLETAMGKLRATFGEYGLGAATGIDLPDESTGFVPKEYSFANYIANAFGQFDNYTPMQLAQYVATIANNGVRVAPRIVEGIY GNNDKGGLGDLIQQLQPTEMNKVNISDSDMSILHQGFYQVAHGTSGLTTGRAFSNGALVSISGKTGTAESYVADGQQATNTNAVA YAPSDNPQIAVAVVFPHNTN

>49-like

TNVFIPGSVVKAATISSGWENGVLSGNQTLTDQPIVFQGSAPIYSWYKLAYGSFPITAVEALEYSSNAYMVQTALGIMGQTYQPNMF VGTSNLETAMGKLRATFGEYGLGAATGIDLPYESTGFVPKEYSFANYITNAFGQFDNYTPMQLAQYVATIANDGVRVAPRIVEGIYG NNDKGGLGDLIQQLQPTEMNKVNISDSDMSILHQGFYQVSHGTSPLTTGRAFSDGATVSISGKTGTGESYVAGGQEANNTNAVAY APTENPQIAVAVVFPHNTN

>new1-like

TNVFVPGSVVKAATISSGWENGVLSGNQTLTDQPIVFQGSAPIYSWYKLAYGSFPITAVEALEYSSNAYMVQTALGIMGQTYQPNM FVGTSNLESAMEKLRSTFGEYGLGTATGIDLPDESTGFVPKEYSFANYITNAFGQFDNNTPMQLAQYVATIANNGVRVAPRIVEGIY GNNDKGGLGDLIQQLQPTEMNKVNISDSDMSILHQGFYQVAHGTSGLTTGRAFSNGAAVSISGKTGTAESYVEGGQEANNTNAVA YAPSDNPQIAVAVVFPHNTN

Appendix 1 Table 6. Novel PBP2x transpeptidase domain sequences identified in this str	ıdy
--	-----

Sequences >8-like

GKDGIITYEKDRLGNIVPGTEQVSQQTVDGKDVYTTLSSPLQSFMETQMDAFLEKVKGKYMTATLVSAKTGEILATTQRPTFNADTK EGITEDFVWRDILYQSNYEPGSAMKVMTLASSIDNNTFPSGEYFNSSEFKIADATTRDWDVNEGLTTGGMMTFLQGFAHSSNVGM SLLEQKMGDATWLDYLKRFKFGVPTRFGLTDEYAGQLPADNIVSIAQSSFGQGISVTQTQMLRAFTAIANDGVMLEPKFISAIYDTNN QSVRKSQKEIVGKPVSEEAASTTRNHMILVGTDPLYGTMYNHYTGKPIITVPGQNVAVKSGTAQIADEKNGGYLVGSTNYIFSAVTM NPAENPDFILYV

>16-like

GTDGIITYEKDRVGNIVPGTELVSQQTVDGKDVYTTLSSPLQSFMETQMDAFLEKVKGKYMTATLVSAKTGEILATTQRPTFNADTK EGITEDFVWRDILYQSNYEPGSAMKVMTLASSIDNNTFPSGEYFNSSEFKIADATTRDWDVNEGLTTGGMMTFLQGFAHSSNVGM SLLEQKMGDATWLDYLKRFKFGVPTRFGLTDEYAGQLPADNIVSIAQSSFGQGISVTQTQMLRAFTAIANDGVMLEPKFISAIYDPNN QSVRKSQKEIVGKPVSEDTASLTRTNMILVGTDPLYGTMYNHYTGKPIITVPGQNVAVKSGTAQIADEKNGGYLVGSTNYIFSAVTM NPAENPDFILYV

>16-like-2

GTDGIITYEKDRVGNIVPGTELVSQQTVDGKDVYTTLSSPLQFFMETQMDAFLEKVKGKYMTATLVSAKTGEILATTQRPTFNADTK EGITEDFVWRDILYQSNYEPGSAMKVMTLASSIDNNTFPSGEYFNSSEFKIADATTRDWDVNEGLTTGGMMTFLQGFAHSSNVGM SLLEQKMGDATWLDYLKRFKFGVPTRFGLTDEYAGQLPADNIVSIAQSSFGQGISVTQTQMLRAFTAIANDGVMLEPKFISAIYDTNN QSVRKSQKEIVGKPVSEDTASLTRTNMILVGTDPLYGTMYNHYTGKPIITVPGQNVAVKSGTAQIADEKNGGYLVGSTNYIFSAVTM NPAENPDFILYV

>36-like

GTDGIITYEKDRVGNIVPGTELVSQQTVDGKDVYTTLSSPLQSFMETQMDAFLEKVKGKYMTATLVSAKTGEILATTQRPTFNADTK EGITEDFVWRDILYQSNYEPGSAMKVMTLASSIDNNTFPSGEYFNSSEFKMADVTTRDWDVNGGLTTGGMMTFLQGFAHSSNVG MSLLEQKMGDATWLDYLKRFKFGVPTRFGLTDEYAGQLPADNIVSIAQSSFGQGISVTQTQMLRAFTAIANDGVMLEPKFISAIYDT NNQSVRKSQKEIVGNPVSKETASTTRNHMILVGTDPLYGTMYNHYTGKPIITVPGQNVAVKSGTAQIADEKNGGYLVGSTNYIFSAV TMNPAENPDFILYV

>43-like

GTDGIITYEKDRLGNIVPGTEQVSQQTVDGKDVYTTISSTLQSFMETQMDAFLEKVKGKYMTATLVSAKTGEILATTQRPTFNADTKE GITEDFVWRDILYQSNYEPGSAMKVMTLASSIDNNTFPSGEYFNSSEFKIADATTRDWDVNEGLTTGGMMTFLQGFAHSSNVGMS

Sequences

LLEQKMGDATWLDYLKRFKFGVPTRFGLTDEYAGQLPADNIVSIAQSSFGQGISVTQTQMLRAFTAIANDGVMLEPKFISAIYDTNN QSVRKSQKEIVGNPVSKEAASTTRNHMLLVGTDPLYGTMYNHYTGKPIITVPGQNVAVKSGTAQIADEKNGGYLVGSTNYIFSAVTM NPAENPDFILYV

>73-like

GTDGIITYEKDRLGNIVPGTEQVSQRTMDGKDVYTTISSPLQSFMETQMDAFLEKVKGKYMTATLVSAKTGEILATTQRPTFNADTK EGITEDFVWRDILYQSNYEPGSAMKVMTLASSIDNNTFPSGEYFNSSEFKIADATIRDWDVNDGLTTGGMMTFLQGFAHSSNVGMS LLEQKMGDATWLDYLKRFKFGVPTRFGLTDEYAGQLPADNIVSIAQSSFGQGISVTQTQMLRAFTAIANDGVMLEPKFISAIYDTNN QSVRKSQKEIVGNPVSKEAASTTRNHMILVGTDPLYGTMYNHYTGKPIITVPGQNVAVKSGTAQIADEKNGGYLVGSTNYIFSVVTM NPAENPDFILYV

>100-like

GTDGIITYEKDRVGNIVPGTELVSQQTVDGKDVYTTLSSPLQSFMETQMDAFLEKLKGKYMTATLVSAKTGEILATTQRPTFNADTK EGITEDFVWRDILYQSNYEPGSGMKVMTLASSIDNNTFPSGEYFNSSEFKIADATTRDWDVNEGLTTGGMMTFLQSFAHSSNVGM SLLEQKMGDATWLDYLKRFKFGVPTRFGLTDEYAGQLPADNIVSISQSSFGQGISVTQTQMLRAFTAIANDGVMLEPKFISAIYDTNN QSVRKSQKEIVGNPVSKEAASTTRNHMILVGTDPLYGTMYNHYTGKPIITVPGQNVAVKSGTAQIADEKNGGYLVGSTNYIFSVVTM NPAENPDFILYV

>112-like

GKDGIITYEKDRLGNIVPGTEQVSQQTVDGKDVYTTLSSPLQSFMETQMDAFLEKLKGKYMTATLVSAKTGEILATTQRPTFNADTK EGITEDFVWRDILYQSNYEPGSGMKVMTLASSIDNNTFPSGEYFNSSEFKIADATTRDWDVNEGLTTGGMMTFLQGFAHSSNVGM SLLEQKMGDATWLDYLKRFKFGVPTRFGLTDEYAGQLPADNIVSISQSSFGQGISVTQTQMLRAFTAIANDGVMLEPKFISAIYDTNN QSVRKSQKEIVGNPVSKEAASTTRNHMILVGTDPLYGTMYNHYTGKPIITVPGQNVAVKSGTAQIADEKNGGYLVGSTNYIFSVVTM NPAENPDFILYV

>112-like-2

GKDGIITYEKDRLGNIVPGTEQVSQQTVDGKDVYTTLSSPLQSFMETQMDAFLEKVKGKYMTATLVSAKTGEILATTQRPTFNADTK EGITEDFVWRDILYQSNYEPGSGMKVMTLASSIDNNTFPSGEYFNSSEFKIADATTRDWDVNEGLTTGGMMTFLQGFAHSSNVGM SLLEQKMGDATWLDYLKRFKFGVPTRFGLTDEYAGQLPADNIVSIAQSSFGQGISVTQTQMLRAFTAIANDGVMLEPKFISAIYDTNN QSVRKSQKEIVGNPVSKEAASTTRNHMILVGTDPLYGTMYNHYTGKPIITVPGQNVAVKSGTAQIADEKNGGYLVGSTNYIFSVVTM NPAENPDFILYV

>143-like

GTDGIITYEKDRLGNIVPGTEQVSQQTVDGKDVYTTLSSPLQSFMETQMDAFLEKVKGKYMTATLVSAKTGEILATTQRPTFNADTK EGITEDFVWRDILYQSNYEPGSAMKVMTLASSIDNNTFPSGEYFNSSEFKIADATTRDWDVNDGLTTGGMMTFLQGFAHSSNVGM SLLEQKMGDTTWLDYLNRFKFGVPTRFGLTDEYAGQLPADNIVSIAQSSFGQGISVTQTQMLRAFTAIANDGVMLEPKFISAIYDTNN QSVRKSQKEIVGNPVSKEAASTTRNHMILVGTDPLYGTMYNHYTGKPIITVPGQNVAVKSGTAQIADEKNGGYLVGSTNYIFSVVTM NPAENPDFILYV

>154-like

GKDGIITYEKDRLGNIVPGTEQVSQQTVDGKDVYTTISSTLQSFMETQMNAFQEKVKGKYMTATLVSAKTGEILATTQRPTFNADTK EGITEDFVWRDILYQSNYEPGSAMKVMTLASSIDNNTFPSGEYFNSSEFKIADATTRDWDVNEGLTTGGMMTFLQGFAHSSNVGM SLLEQKMGDATWLDYLKRFKFGVPTRFGLTDEYAGQLPADNIVSIAQSSFGQGISVTQTQMLRAFTAIANDGVMLEPKFISAIYDTNN QSVRKSQKEIVGKPVSEDTASTTRNHMILVGTDPLYGTMYNHYTGKPIITVPGQNVAVKSGTAQIADEKNGGYLVGSTNYIFSAVTM NPAENPDFILYV

										Tn of		
Isolate						int-	xis-	tnpR-	tnpA-	Tn916-	folA	folP
name	ermB	tetM	cat	mef(A/E)	aphA3	Tn916	Tn916	Tn916	Tn916	like	mutation ⁺	insertion‡
B1136	+	+	+	-	-	+	+	-	-	Tn6002	+	+
B999-49	+	+	+	-	-	+	+	-	-	Tn6002	+	+
B1300936	+	+	+	_	-	+	+	-	-	Tn6002	+	+
1018-71	+	+	+	-	-	+	+	-	-	Tn6002	+	+
1025-08	+	+	+	-	-	+	+	-	-	Tn6002	+	+
1054-32	+	+	+	-	-	+	+	-	-	Tn6002	+	+
B1675	+	+	+	_	-	+	+	-	-	Tn6002	+	+
B0236	+	+	+	_	-	+	+	-	-	Tn6002	+	+
1148-64	+	+	+	-	-	+	+	_	-	Tn6002	+	+
1217-52	+	+	+	_	-	+	+	-	-	Tn6002	+	+
K54	+	+	+	_	-	+	+	-	-	Tn6002	+	+
K55	+	+	+	_	-	+	+	-	-	Tn6002	+	+
B2581	+	+	+	_	-	+	+	-	-	Tn6002	+	+
B5939	+	+	+	_	-	+	+	-	-	Tn6002	+	+
B4505	+	+	+	_	-	+	+	-	-	Tn6002	+	+
B1757	+	+	+	_	-	+	+	-	-	Tn6002	+	+
B3127	+	+	+	-	-	+	+	_	-	Tn6002	+	+
B2404	+	+	+	-	-	+	+	-	-	Tn6002	+	+
B8812	+	+	+	_	-	+	+	-	-	Tn6002	+	+
1244-61	+	+	+	_	-	+	+	-	-	Tn6002	+	+
1267-33	+	+	+	_	-	+	+	-	-	Tn6002	+	+
1276-72	+	+	+	_	-	+	+	-	-	Tn6002	+	+
K72	+	+	+	-	-	+	+	-	-	Tn6002	+	+
K110	+	+	+	-	-	+	+	-	-	Tn6002	+	+

Appendix 1 Table 7. Results of PCR amplification of antimicrobial resistance genes and Tn916-like transposon gene in 24 meropenem-nonsusceptible 15B/C-ST83 clinical isolate strains*

*+, PCR positive; –, PCR negative. †DNA sequence analysis revealed I100L substitution in *folA*. ‡DNA sequence analysis revealed insertion of one codon between bases 168 and 201 in *folP*.

App	endix	1 Table	8. Seque	nce coordi	nates of	recombination	sites
-----	-------	---------	----------	------------	----------	---------------	-------

Number of		Length of		
recombination	Sequence	recombination		
sites	coordinates	sites, bp	Genes or putative protein function	Recombination events
1	124732-124902	171	Part of <i>pspA</i> gene	15B/C-ST83
2	302151-329719	27,569	cps locus	15B/C-ST83
3	362492-389805	27,314	tig, spi, DNA helicase, mutS2, and bacteriocin	15B/C-ST83
4	750043–751380	1,338	IS861 of orfA and IS-Spn1 orf8	15B/C-ST83 and 23F-ST81
5	958399–961937	3,539	DNA primase, ropD and ABC transporter	15B/C-ST83 and 23F-ST81
6	1279909-1280068	160	Partial tetM in ICE element region	15B/C-ST83 and 23F-ST81
7	1487797-1526819	39,023	Autolysin, holing, putative phage protein cluster	15B/C-ST83 and 23F-ST81
8	1722313-1732499	10,187	Part of psrP gene	15B/C-ST83 and 23F-ST81
9	1831969–1839540	7,572	Siderophore uptake periplasmic binding protein, <i>rluB</i> , <i>scpB</i> , <i>scpA</i> , <i>xerD</i> , <i>glr</i>	15B/C-ST83 and 23F-ST81
10	1938458–1941716	3,259	pfIC, purR	15B/C-ST83 and 23F-ST81
11	2094386-2095149	764	Putative DNA binding protein	15B/C-ST83
12	2171700-2171829	130	Part of <i>cbpA</i> gene	15B/C-ST83

Appendix 1 Figure 1. Neighbor-joining trees showing the relatedness of the amino acid sequence of A) PBP1a; B) PBP2b; and C) PBP2x of *Streptococcus pneumoniae*, Taiwan, 2013–2017. The amino acid sequence of PBP in the *S. pneumoniae* R6 strain is included as a reference. The evolutionary history was inferred using the neighbor-joining method (*6*). The optimal trees had branch length sums of A) 0.29717399; B) 0.21161535; and C) 0.27634923. The percentage of replicate trees in which the associated taxa clustered together in the bootstrap test (1,000 replicates) are shown next to the branches (*7*). The evolutionary distances were computed by using the Poisson correction method (*8*). Scale bars indicate the number of amino acid substitutions per site. PBP, penicillin binding protein.

Appendix 1 Figure 2. Recombination-free phylogenetic tree of draft genomes of Streptococcus pneumoniae isolates collected in Taiwan during 2013-2017. The tree was created by using the maximum likelihood method in RAxML (https://github.com/stamatak/standard-RAxML) and the GTRCAT model with 1,000 bootstrap values in Recombination Detection Program (RDP) version 4.89 (9). Draft genomes were generated from contigs by using a post-assembly genome-improvement toolkit (10), including 24 meropenem-nonsusceptible serotype 15B/C-ST83, and 3 23F-ST81 strains. The PMEN1 reference strain, accession no. ATCC-700669, was added as an outgroup. Parsnp version 1.2 of the Harvest Suite (11) was applied to perform a core alignment of these genomes before constructing the tree using RDP. Scale bar represents nucleotide substitutions per site.

References

- Sanbongi Y, Ida T, Ishikawa M, Osaki Y, Kataoka H, Suzuki T, et al. Complete sequences of six penicillin-binding protein genes from 40 *Streptococcus pneumoniae* clinical isolates collected in Japan. Antimicrob Agents Chemother. 2004;48:2244–50. <u>PubMed</u> <u>https://doi.org/10.1128/AAC.48.6.2244-2250.2004</u>
- Talebi M, Azadegan A, Sadeghi J, Ahmadi A, Ghanei M, Katouli M, et al. Determination of characteristics of erythromycin resistant *Streptococcus pneumoniae* with preferred PCV usage in Iran. PLoS One. 2016;11:e0167803. <u>PubMed https://doi.org/10.1371/journal.pone.0167803</u>
- Setchanova L, Tomasz A. Molecular characterization of penicillin-resistant *Streptococcus pneumoniae* isolates from Bulgaria. J Clin Microbiol. 1999;37:638–48. <u>PubMed</u> <u>https://doi.org/10.1128/JCM.37.3.638-648.1999</u>
- 4. Lattar SM, Wu X, Brophy J, Sakai F, Klugman KP, Vidal JE. A mechanism of unidirectional transformation, leading to antibiotic resistance, occurs within nasopharyngeal pneumococcal biofilm consortia. MBio. 2018;9:e00561–18. <u>PubMed https://doi.org/10.1128/mBio.00561-18</u>
- 5. Haasum Y, Ström K, Wehelie R, Luna V, Roberts MC, Maskell JP, et al. Amino acid repetitions in the dihydropteroate synthase of *Streptococcus pneumoniae* lead to sulfonamide resistance with limited effects on substrate K(m). Antimicrob Agents Chemother. 2001;45:805–9. <u>PubMed https://doi.org/10.1128/AAC.45.3.805-809.2001</u>
- Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol. 1987;4:406–25. <u>PubMed</u>
- 7. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution. 1985;39:783–91. PubMed https://doi.org/10.1111/j.1558-5646.1985.tb00420.x
- 8. Zuckerkandl EPL. Evolutionary divergence and convergence in proteins. In: Bryson V and Vogel HJ, editors. Evolving genes and proteins. New York: Academic Press. 1965:97–166.
- 9. Martin DP, Murrell B, Golden M, Khoosal A, Muhire B. RDP4: detection and analysis of recombination patterns in virus genomes. Virus Evol. 2015;1:vev003. <u>PubMed</u> <u>https://doi.org/10.1093/ve/vev003</u>
- Swain MT, Tsai IJ, Assefa SA, Newbold C, Berriman M, Otto TD. A post-assembly genomeimprovement toolkit (PAGIT) to obtain annotated genomes from contigs. Nat Protoc. 2012;7:1260–84. <u>PubMed https://doi.org/10.1038/nprot.2012.068</u>

11. Treangen TJ, Ondov BD, Koren S, Phillippy AM. The Harvest suite for rapid core-genome alignment and visualization of thousands of intraspecific microbial genomes. Genome Biol. 2014;15:524. <u>PubMed https://doi.org/10.1186/s13059-014-0524-x</u>