Getting started with MicrobeTrace

COVID-19 Genomic Epidemiology Toolkit: Module 3.2

Ellsworth Campbell, MS Computational Biologist Centers for Disease Control and Prevention

cdc.gov/coronavirus

Toolkit map

Part 1: Introduction

- 1.1 What is genomic epidemiology?
- 1.2 The SARS-CoV-2 genome
- 1.3 How to read phylogenetic trees
- 1.4 Emerging variants of SARS-CoV-2

Part 2: Case Studies

- 2.1 SARS-CoV-2 sequencing in Arizona
- 2.2 Healthcare cluster transmission
- 2.3 Community transmission
- 2.4 Superspreading event
- 2.5 Confirming reinfection
- 2.6 Detecting & prioritizing variants
- 2.7 Wastewater-based variant tracking

Part 3: Implementation

- 3.1 Getting started with Nextstrain
- 3.2 Getting started with MicrobeTrace
- 3.3 Phylogenetics with UShER
- 3.4 Walking through Nextstrain trees
- 3.5 Public genome repositories
- 3.6 Sequencing strategies

Outline

- MicrobeTrace overview
- Transmission networks
- Types of input files
- Genomic data and MicrobeTrace
- Demo of simulated data
- Resources

What is MicrobeTrace?

- A powerful, secure data visualization tool to map transmission networks
- Handles various data inputs
 - Genetic
 - Epidemiological
- User-friendly exploration of COVID-19 data

https://microbetrace.cdc.gov/MicrobeTrace/

What are transmission networks?

Fine-grain resolution of transmission

Outbreak-specific intervention efforts

Genetic distance network

Future prevention strategies

Types of networks

Edge list

Edge list or ontact tracing list (.csv file):

<u>Rows</u> = potential exposure between a case and their contact.

The edge can be from a person or a place.

Case/Place	Contact	Contact type
36	49	locationLink
36	50	locationLink
36	51	locationLink
36	52	locationLink
31	53	contactTracing
53	49	contactTracing
31	54	contactTracing
46	54	contactTracing

Layered Information

Layered Information

Node Outcome↑↓	Count‡↓	Color	•
Symptomatic	24	1	
Asymptomatic	21	1	
Death	4	1	
Hospitalized	4	1	
Unknown	1	1	

Genomic data inputs supported by MicrobeTrace

Aligned sequences (FASTA)

>Sequence 1
AAATGTTATTCATGCT
>Sequence 2
AAATATTACTCATGCT

	Seq1	Seq2	Seq3	Seq4
Seq1	0	2	4	1
Seq2	2	0	1	2
Seq3	4	1	0	2
Seq4	1	2	2	0

Distance matrices

(CSV)

Phylogenic tree (NEWICK)

Standard text format for tree files, encodes cluster information about sequences and clades.

MicrobeTrace plots networks based on calculated genetic distance

1. Sequences (FASTA)

- Complete control of your sequences from beginning to end
- But data need preprocessing with external tools before importing to MicrobeTrace

Example alignment: good quality

TGTGTGGC TCGGC G AAC TTAA AA С TGTCAC T A A A A T C T G T G T G G C T G T C A C T C G G C T G C A TGTTCTCTAAACGAAC TGTTCTCTAAACGAA AAAATCTGTGTGGCTGTCACTCGGCTGCA TGTTCTCTAAACGAAC T T T A A A A T C T G T G T G G C T G T C A C T C G G C T G C A T A A A A T C T G T G T G G C T G T C A C T C G G C T G C A TGTTCTCTAAACGAAC T A A A A T C T G T G T G G C T G T C A C T C G G C T G C A TCTCTAAACGAAC TGT TC AAAA T C T G T G T G G C T G T C A C T C G G C T G C A TAAACGAA A A A A T C T G T G T G G C T G T C A C T C G G C T G C A TGTTCTCTAAACGAA T T T A A A A T C T G T G T G G C T G T C A C T C G G C T G C A TGTTCTCTAAACGAAC

Example alignment: poor quality, strings of Ns

 A
 T
 C
 T
 C
 T
 G
 T
 G
 C
 T
 G
 T
 C
 G
 C
 T
 G
 C
 T
 G
 C
 T
 G
 C
 T
 G
 C
 T
 G
 C
 T
 G
 C
 T
 G
 C
 T
 G
 C
 T
 G
 C
 T
 G
 C
 T
 G
 C
 T
 G
 C
 T
 G
 C
 T
 G
 C
 T
 G
 C
 T
 G
 C
 T
 G
 T
 C
 T
 G
 T
 G
 T
 G
 T
 G
 T
 G
 T
 G
 T
 G
 T
 G
 T
 G
 T
 G
 T
 G
 G
 T
 G
 G
 T
 G
 G
 T
 G
 G
 T
 G
 G
 T
 G
 G
 T
 G
 G
 T
 G
 G
 T
 G
 G
 T
 G
 G
 G

Example alignment: poor quality, misaligned

 A
 T
 C
 T
 C
 A
 A
 C
 T
 T
 C
 T
 G
 T
 G
 C
 T
 G
 C
 T
 G
 C
 T
 G
 C
 T
 G
 C
 T
 G
 C
 T
 G
 C
 T
 G
 C
 T
 G
 C
 T
 G
 C
 T
 G
 C
 T
 G
 C
 T
 G
 C
 T
 G
 C
 T
 G
 C
 T
 G
 C
 T
 G
 C
 T
 G
 C
 T
 G
 C
 T
 G
 C
 T
 G
 C
 T
 G
 C
 T
 G
 C
 T
 G
 C
 T
 G
 C
 T
 G
 C
 T
 G
 C
 T
 G
 C
 T
 G
 C
 T
 G
 C
 T
 G
 C
 T
 G
 C
 T
 G
 C
 T
 G
 C
 T
 G
 C
 T

Example: genetic distance

Pairwise distance = 4 single nucleotide polymorphisms or SNPs

2. Phylogenetic trees

- Easy
- Download trees from reliable tools like Nextstrain
- Or build your own from a multiple-sequence alignment
- Nextstrain allows metadata download along with tree files

CAUTION: Some web-based tree building algorithms <u>do not</u> clean Ns from sequences and may yield misleading results when imported into MicrobeTrace!

Using phylogenetic trees from Nextstrain

- When viewing a tree with Nextstrain, be sure to select <u>DIVERGENCE</u> so the branch lengths are scaled according to number of mutations, not time
- Export this tree in Newick format using the <u>DOWNLOAD DATA</u> button at the bottom and branch lengths will be encoded as SNP distances for analysis by MicrobeTrace

Using phylogenetic trees from Nextstrain

Files ×			
٥			
Files Experimenta	I	RSCoV2_Tree_forAMDToolkit_MT.nwk	Link Node Matrix FASTA Newick
Distance Metric	SNPs 🗸		
Link Threshold	6		
View to Launch	2D Network 🗸		

- Import the Newick tree into MicrobeTrace
- Start with a link threshold of 6 SNPs and see if the network mimics the tree visualized in Nextstrain
- Adjust threshold according to dataset or investigation
- More detailed guidance available at: <u>https://github.com/CDCgov/MicrobeTrace/wiki/Nextstrain-trees-and-MicrobeTrace</u>

- Simply import CSV into MicrobeTrace no need for data manipulation
 - Distances measured as SNPs or percent divergence.
- Integrity of distance matrix depends on quality of sequence alignment.

Demo using simulated COVID genomic data

Additional MicrobeTrace views

- MicrobeTrace has many views to help analyze genomic and epi data.
- Also useful for epidemiologic studies (e.g., contact tracing) without genomic data.

Links and Resources

Explore the tool https://microbetrace.cdc.gov

Tutorial video https://youtu.be/O52eeyUbplo

Everything you want to know about MicrobeTrace https://github.com/CDCgov/MicrobeTrace/wiki

Example data https://github.com/cdcgov/microbetrace

Support microbetrace@cdc.gov

Acknowledgements

Development

Tony Boyles Ells Campbell Jay Kim Michael Chiu Sergei Kniazev

Testing, analytics, communications, and outreach Anupama Shankar Roxy Cintron-Moret

Team lead Bill Switzer

Learn more

Next module

- 3.3 Real-time phylogenetics with UShER
- COVID-19 Genomic Epidemiology Toolkit
 - Find further reading
 - Subscribe to receive updates on new modules as they are released
 - go.usa.gov/xAbMw

For more information, contact CDC 1-800-CDC-INFO (232-4636) TTY: 1-888-232-6348 www.cdc.gov

The findings and conclusions in this report are those of the authors and do not necessarily represent the official position of the Centers for Disease Control and Prevention.

FOR WEBSITE

Further Reading

- Campbell et al. 2020. Biorxiv. <u>https://www.biorxiv.org/content/10.1101/2020.07.22.216275v1</u>
- Vang et al. 2021. MMWR. <u>https://www.cdc.gov/mmwr/volumes/70/wr/mm7001a5.htm</u>

Resources

- MicrobeTrace <u>https://microbetrace.cdc.gov</u>
- MicrobeTrace Wiki <u>https://github.com/CDCgov/MicrobeTrace/wiki</u>
- MicrobeTrace tutorial <u>https://youtu.be/O52eeyUbplo</u>

Hands-on

Download example data <u>https://github.com/CDCgov/MicrobeTrace</u>