Economic Analysis of COVID-19 Vaccination

University of Michigan
COVID-19 Vaccination Modeling Team

Presentation to the Advisory Committee on Immunization Practices September 19, 2025

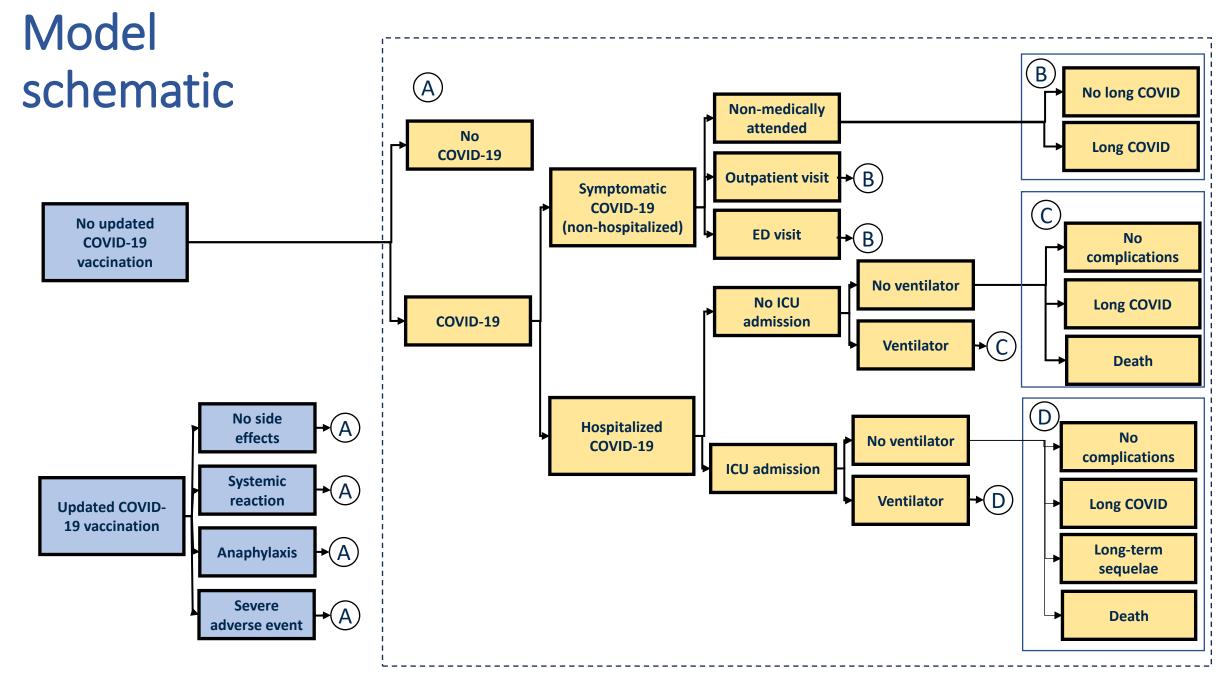
Study team

- University of Michigan
- Wake Forest University
- Centers for Disease Control and Prevention

Conflict of interest statement

No known conflicts of interest.

Economic Analysis of COVID-19 Vaccination: Objectives

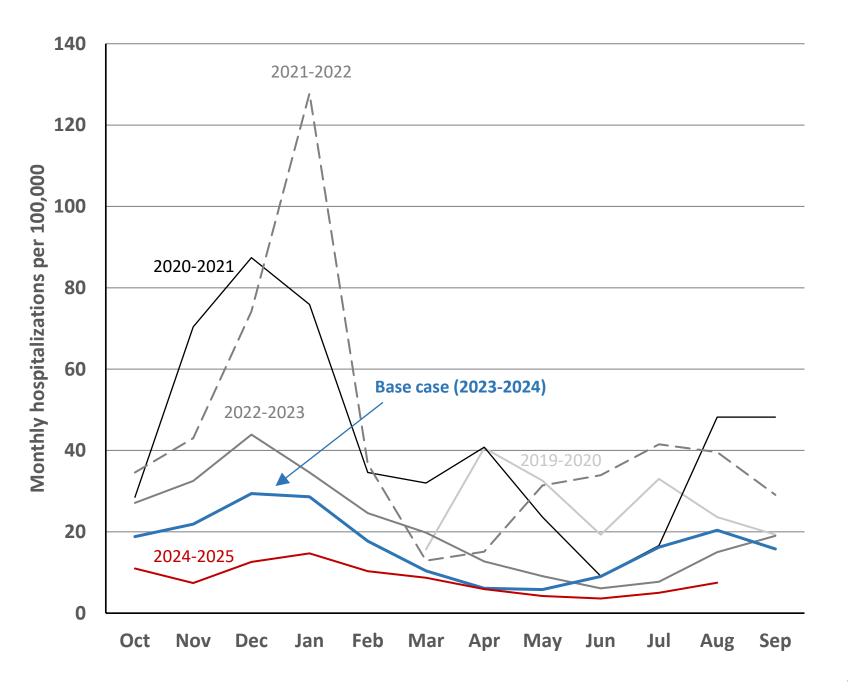

Using an economic model of COVID-19 vaccination:

- Estimate the annual population burden of disease in a cohort representing the US population
 - resource utilization (outpatient visits, hospitalizations)
 - total cases
 - total costs
 - o deaths
 - quality-adjusted life years lost due to COVID-19
- Estimate events averted by COVID-19 vaccination
- Estimate incremental cost-effectiveness ratios for subgroups defined by age and risk status

Methods

- Intervention strategies:
 - Vaccination against COVID-19 illness with an updated "generic" mRNA booster
 - No updated mRNA booster (vaccination against COVID-19 illness with primary series only or primary series plus current booster)
- Target population: all US adults, stratified by age and risk status
 - o 18-49 y, 50-64 y, ≥65 y
 - High risk or not at high risk for complications
 - Pediatric and adolescent age groups <u>excluded</u> from current analysis, insufficient data to incorporate into this first phase analysis
- Time horizon: 1 year*
- Perspective: Societal
- Costing year: 2024\$
- Discount rate: 3%

^{*}Costs and QALYs lost due to long-term sequelae and deaths beyond one year are included



ED = emergency department; ICU = intensive care unit

Epidemiological inputs

Input	Source
Probability of symptomatic illness	HEROES-RECOVER (2022 – 2023)
Probability of medically attended illness	MarketScan (2022)
Probability of hospitalization	COVID-NET (2023 - 2024), expert opinion
Probability of ICU stay and ventilator use	COVID-NET (2022 – 2023)
Probability of death	COVID-NET (2022 – 2023)
Probability of long-term sequalae	Published literature
Probability of long COVID	Published literature

Weekly rates of COVID-19— associated hospitalizations by season, all ages

Source: COVID-NET

Vaccination-related parameter inputs

Input	Source
Seasonality-adjusted vaccine impact (SAVI)	VISION (2024 – 2025), IVY (2024 – 2025), COVID-NET (2023 – 2024), expert opinion
 Probabilities of adverse events Systemic reaction Anaphylaxis Myocarditis/pericarditis 	FDA product approval information, published literature, expert opinion

Costs

Input	Source		
Illness-related			
Direct medical costs	MarketScan 2022-2023, published literature		
Productivity losses	BLS, published literature, expert opinion		
Vaccination-related			
Direct medical costs: • Vaccine dose • Administration • Adverse events	CDC vaccine price list Physician fee schedule Published literature, expert opinion		
Time costs of vaccination	Published literature		

BLS = Bureau of Labor Statistics

Quality of life adjustments

Input	Source
Illness-related	
 Symptomatic illness Hospitalization Long-term sequalae Long COVID 	Published literature
Vaccination-related	
Systemic reactionAnaphylaxisMyocarditis/pericarditis	Published literature

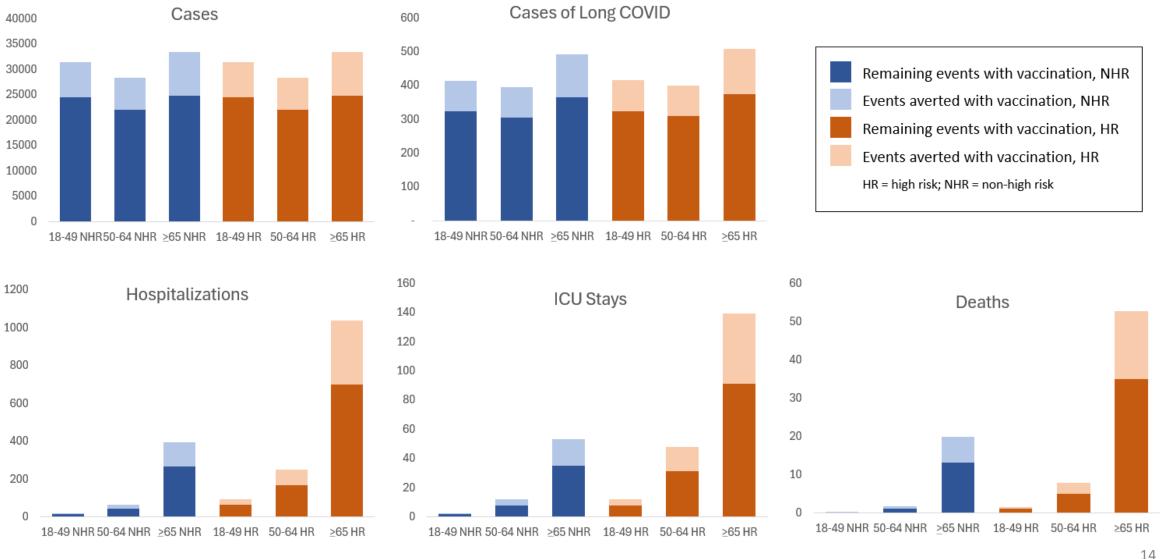
Methods: Analysis Plan

- Project health and economic outcomes stratified by intervention strategy, age (18-49 y, 50-64 y, ≥65 y) and risk subgroups (high risk, non-high risk)
 - Cases
 - Hospitalizations
 - Deaths
 - Costs
 - Quality-Adjusted Life-Years (QALYs)
 - Adverse events
 - Number needed to vaccinate (NNV)

Methods: Analysis Plan

Incremental cost-effectiveness ratio (ICER):

```
Costs<sub>Updated Vaccination</sub> - Costs<sub>No Updated Vaccination</sub>


QALYs<sub>Updated Vaccination</sub> - QALYs<sub>No Updated Vaccination</sub>
```

- Base case analysis
- Sensitivity analyses
 - Probabilistic sensitivity analysis
 - Univariate and multi-way sensitivity analyses
 - Scenario analyses

Results*

*This presentation reports preliminary results of an ongoing analysis

Disaggregated results, per 100,000 simulated cohort, societal perspective, 2025-2026 vaccination

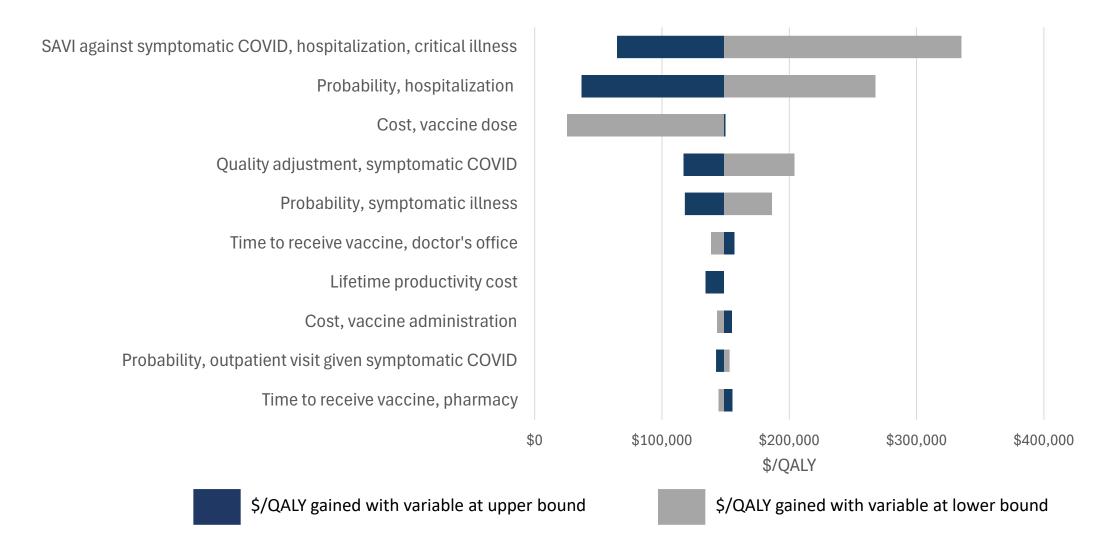
Incremental cost-effectiveness ratios (ICERs), 2025-2026 vaccination, per cohort of 1,000,000

Age	Strategy	Cost	Incremental cost	QALYs	Incremental QALYs	\$/QALY
Non-high-	risk					
10 10	No vaccination	\$121,084,319	-	20,208,352	-	-
18 - 49 y	Vaccination	\$292,804,184	\$171,719,865	20,208,697	345	\$498,090
FO C4	No vaccination	\$172,993,823	-	12,278,283	-	-
50 - 64 y	Vaccination	\$329,875,771	\$156,881,948	12,278,676	393	\$398,809
> C F . v	No vaccination	\$213,552,333	-	6,526,870	-	-
<u>≥</u> 65 y	Vaccination	\$345,570,759	\$132,018,426	6,527,758	887	\$148,811
High-risk	High-risk					
10 10	No vaccination	\$166,726,302	-	20,208,138	-	-
18 - 49 y	Vaccination	\$323,381,110	\$156,654,808	20,208,555	417	\$375,399
FO C4	No vaccination	\$295,589,269	-	12,277,500	-	-
50 - 64 y	Vaccination	\$411,159,262	\$115,569,993	12,278,163	663	\$174,359
\CF.\.	No vaccination	\$395,948,683	-	6,524,593	-	-
<u>></u> 65 y	Vaccination	\$467,984,279	\$72,035,596	6,526,248	1655	\$43,537

Base-case and probabilistic sensitivity analyses, 2025-2026 vaccination

A	ICER (\$/QALY)			
Age	Base case	95% confidence interval		
Non-high-risk				
18 - 49 y	\$498,090	\$309,220 - \$913,905		
50 - 64 y	\$398,809	\$252,690 - \$691,360		
<u>></u> 65 y	\$148,811 \$78,132 - \$276,981			
High-risk				
18 - 49 y	\$375,399	\$232,241 - \$659,757		
50 - 64 y	\$174,359	\$66,920 - \$388,115		
<u>></u> 65 y	\$43,537 Cost-saving - \$142,478			

ICER = incremental cost effectiveness ratio; QALY = quality-adjusted life year


Number needed to vaccinate (NNV), 2025-2026 vaccination, base case

Age	Age NNV to avert a case		NNV to avert a death	
Non-high-risk				
18 - 49 y	15	15,746	1,133,330	
50 - 64 y	16	4,897	145,755	
≥65 y	12	778	14,818	
High-risk				
18 - 49 y	15	3,351	241,229	
50 - 64 y	16	1,227	36,522	
≥65 y	12	296	5,642	

Cost/outcome averted, 2025-2026 vaccination, base case

Age	\$/Case averted	\$/Hospitalization averted	\$/Death averted	
Non-high-risk				
18 - 49 y	\$2,504	\$2,703,838	\$194,615,325	
50 - 64 y	\$2,474	\$768,180	\$22,866,393	
<u>></u> 65 y	\$1,540	\$102,729	\$1,956,219	
High-risk				
18 - 49 y	\$2,282	\$525,021	\$37,789,676	
50 - 64 y	\$1,817	\$141,797	\$4,220,853	
≥65 y	\$836	\$21,344	\$406,450	

One-way sensitivity analysis, >65 years, non-high-risk

Base case: \$148,811/QALY

SAVI = seasonality-adjusted vaccine impact

One-way sensitivity analysis: probability of hospitalization

•	ICER (\$/QALY)				
Age	Lower bound Base case		Upper bound		
Non-high-risk					
18 - 49 y	\$526,249	\$498,090	\$466,186		
50 - 64 y	\$501,595	\$398,809	\$306,095		
<u>></u> 65 y	\$267,505 \$148,811		\$81,894		
High-risk					
18 - 49 y	\$477,426	\$375,399	\$284,883		
50 - 64 y	\$368,234	\$174,359	\$68,386		
<u>></u> 65 y	\$157,467	\$43,537	Cost-saving		

ICER = incremental cost effectiveness ratio; QALY = quality-adjusted life year

Scenario analysis: vaccine dose cost, 2025-2026 vaccination

	ICER (\$/QALY)					
Age	\$30	\$60	\$90	\$120	Base case	\$150
Non-high-risk						
18 - 49 y	\$181,113	\$268,131	\$355,149	\$442,166	\$498,090	\$529,184
50 - 64 y	\$121,009	\$197,272	\$273,535	\$349,798	\$398,809	\$426,061
<u>></u> 65 y	\$25,631	\$59,447	\$93,262	\$127,078	\$148,811	\$160,894
High-risk						
18 - 49 y	\$113,526	\$185,417	\$257,307	\$329,198	\$375,399	\$401,088
50 - 64 y	\$9,490	\$54,750	\$100,011	\$145,272	\$174,359	\$190,532
<u>></u> 65 y	Cost-saving	Cost-saving	\$13,753	\$31,885	\$43,537	\$50,016

ICER = incremental cost effectiveness ratio; QALY = quality-adjusted life year

Base case: \$139.28

Age ≥18 private sector prices: Moderna \$141.80; Pfizer \$136.75

Accounting for Vaccine Wastage in Costeffectiveness Analyses

- Few CEAs include wastage as a separate cost in the analysis
- Conventional assumption is that any costs associated with wastage are reflected in the price per dose (if returns are allowed) or the administration fee (if provider bears the cost of unused doses)
- Scenario analysis on price per dose yields insights if wastage is not adequately captured by base case assumptions

Limitations

- Unpublished data used to derive key parameters in the model: vaccine effectiveness, symptomatic illness, probabilities of hospitalization and critical illness
- Data sources vary in representativeness, generalizability
- VE estimates derived from single prior season data
- Few seasons to date to estimate seasonality
- MarketScan data for ages <u>></u>65 y only includes those with supplemental insurance
- Evidence base for long COVID is especially scarce
- Model does not include reduced transmission (conservative approach)

Summary

- Vaccination averts morbidity and mortality for all age and risk groups
- Substantial variation in impact by age and risk status
- Overall economic favorability has declined compared to estimates from earlier seasons due to declining burden of illness
- ICERs for ≥65 y age group [HR: \$44,000/QALY; NHR: \$149,000/QALY] are robust to changes in parameter inputs across plausible ranges [HR: Cost-saving-\$142,000/QALY; NHR: \$78,000/QALY-\$277,000/QALY]
- ICERs for 18-49 y and 50-64 y age groups are sensitive to changes in parameter inputs and favorable only under certain conditions for high-risk 50-64 y

Questions