Workgroup Safety Uncertainties of mRNA COVID Vaccines

Wafik El-Deiry, MD, PhD, FACP Director, Legorreta Cancer Center Associate Dean, Oncologic Sciences Warren Alpert Medical School, Brown University

Charlotte Kuperwasser, PhD

Director, Tufts Convergence Laboratory of Biomedical, Physical, and Engineering Sciences Professor Developmental, Molecular & Chemical Biology, Tufts University School of Medicine

September 19, 2025

TERMS OF REFERENCE # 6, 7 & 8

Summary of Workgroup Activities for TORs

- 1. Immune Changes
- 2. Biodistribution
- 3. Frameshifting
- 4. Impurities

Immune Changes

COVID vaccination, especially multiple doses, can lead to the following immune responses:

- IgG4 class switching ¹
- Production of anti-idiotype antibodies ^{2,3}
- Low long-term IgG Fc galactosylation and sialylation levels ⁴
- Persistent cytokine changes ^{5,6}
- Reduction in circulating memory and effector CD4 T cells, and increases in TNFα+ CD8 T cells⁷
- Risk of more persistent and/or recurring infections 8-10

- 1) Irrgang et al. Sci Immunol (2023)
- 2) Murphy et al . N Engl J Med (2022).
- 3) Bellucci et al. Front Immunol. 2024
- 4) Buhre, et al. Front Immunol (2023)
- 5) Alghamdi et al. *Immun Inflamm Dis* (2025)
- 6) Cabău et al. Vaccines (2024)
- 7) Bhattacharjee et al. & Iwasaki A *medRxiv* (2025)
- 8) Noé, A. et al. Front Immunol (2023).
- 9) Yamamoto, M. et al. J Cut Immun and Allergy (2022)
- 10) Park, H et al. Science Trans Med (2025).

Immune Summary

- The persistence, clinical significance, and potential long-term consequences of these immune changes is uncertain.
- More research is needed to understand vaccine non-specific effects on innate and adaptive immunity and its ability to reprogram innate and adaptive immune cells.

Biodistribution

Pfizer- Comirnaty

FDA Summary Basis for Regulatory Action (SBRA)

Used a **luciferase reporter mRNA** (instead of spike mRNA) in mice and rats, delivered in the same lipid nanoparticles (LNPs). Also tested biodistribution/metabolism of Pfizer's two novel lipids (ALC-0315 and ALC-0159):

IM injection in mice:

High levels detected in:

- Injection site
- Liver

Biodistribution

Moderna- SPIKEVAX FDA Summary Basis for Regulatory Action (SBRA)

States **no biodistribution study was performed with mRNA-1273**; instead, FDA reviewed a biodistribution study of **a different mRNA vaccine** made with the same SM-102 LNP, considered those results *supportive* for Spikevax.

High levels in:

- Draining lymph nodes
- Spleen
- Eye
- Liver
- Low levels detected in many tissues including:
 - Heart, lung, testis, brain
- In brain, ~2–4% of plasma levels (so *trace crossing* of the blood–brain barrier).

Biodistribution

Vaccine mRNA in humans

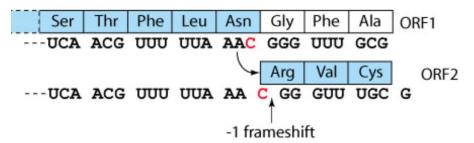
		Tufts School of Medicine
Site	Persistence After Vaccination	Reference(s)
Axillary lymph node	Up to 30 days	Krauson et al. NPJ Vaccines (2023)
Heart (myocardium/cardiac ventricles)	Up to 30 days	 Yonker et al., Circulation (2023) Boros et al, Pharmacol Res Perspect (2024) Krauson et al. NPJ Vaccines (2023)
Blood	~15 days to 23 months	 Patterson et al, Hum Vaccin Immunother (2025) Ogata et al, Clin Infect Dis (2022) Fertig et al, Biomedicines (2022) Bhattacharjee et al. medRxiv (2025) Brogna et al. Proteomics Clin Appl (2023)
CNS (skull/meninges/ Cerebral arteries	Up to ~17 months	 Ota et al. J Clin Neurosci (2025) Luis et al Brain Behav Immun Health (2021)
Breast milk	45 hours	Hanna et al. <i>JAMA Pediatr</i> (2022)

Biodistribution Summary

- Neither Moderna or Pfizer biodistribution studies used commercial product for testing.
- Neither Moderna or Pfizer biodistribution data showed confinement to site of injection. Distribution included draining lymph nodes, liver, spleen, heart, brain, lungs, and blood. It was noted that it could cross the BBB.
- Covid vaccine mRNA has been detected in multiple tissues in humans including lymph nodes, heart, CNS, blood, and others.
- Covid vaccine mRNA has been reported to persist for up to 706 days.

Frameshifting

Off-target protein production

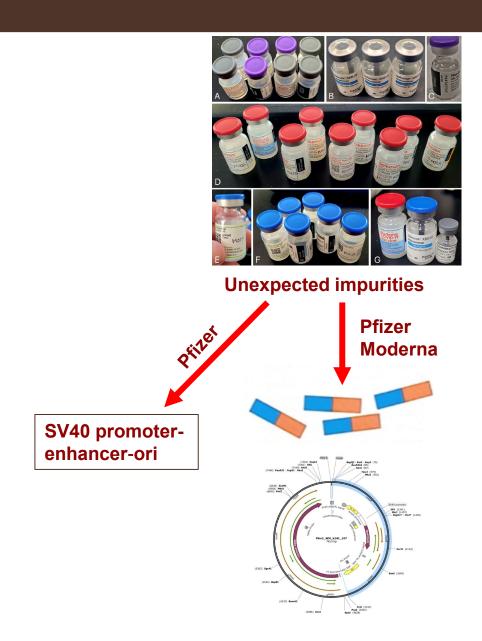

- Therapeutic/in vitro-transcribed (IVT) mRNAs often contain modified nucleotides (ribonucleotides), such as N¹- methylpseudouridine to help reduce innate immune activation and increase stability.
- Nucleoside-modified mRNA is synthetic and not a natural mRNA.
- This modification instructs cells to produce off-target proteins
 due to ribosomal slipping ^{1,2}.
 1) Mulroney, T. E.. Nature 625, 189-194 (2024).
 - 2) Boros, L. G. et al.. Pharmacol Res Perspect (2024).

Frameshifting

- There is evidence that these unintended/off-target proteins generate an immune (T cell) response in humans ¹
- Immunogenic or toxic properties of the non-spike proteins is unknown.
- The health consequences of prolonged and persistent nonspike protein production have not been studied

Impurities

Tufts | School of Medicine


Sources during manufacturing

1. Incomplete Digestion (DNAse)

2. Separation Challenges

DNA impurities in vaccines have been reported in the following:

- 1. Speicher, D. J., et al. (2025).
- 2. McKernan, K. (2023).
- 3. Raoult, D. (2024).
- 4. Kaiser, S., et al (2025).
- 5. Kämmerer, et al (2024).
- 6. Buckhaults, P. (2023).
- 7. König, B. (2024).
- 8. Wang et al (2024).

Differences between Pfizer vs Moderna

	Pfizer/Comirnaty	Moderna/Spikevax
Vector used for generating the DNA template	Bacterial plasmid that contains mammalian-cell expression elements, including SV40 promoter/enhancer sequences.	Bacterial plasmid
Foreign DNA material of concern	SV40 promoter/enhancer-ori	Full nucleotide sequences have not been published
DNA fragment sizes & quantity	Mean ~214 bp, maximum ~3.5 kb ~ 371-1,548 ng per dose*	Similar fragmented distribution, but maximum size smaller, consistent with smaller plasmid backbone. ~ 1,130-6,280 ng per dose*
Clinical trial vs marketed product	Clinical trials used a clean PCR product template. Commercial product uses plasmid. No clinical trial was conducted on marketed product.	Same product on market as clinical trial

*FDA limit of 10 ng set for naked DNA, not DNA in presence of LNP that carries DNA into cells and their nuclei.

Impurities

- Pfizer vaccine: Exceeds limits¹ by ~36-153-fold and SV40 promoter/enhancer sequences detected².
- Moderna: Exceeds limits¹ by ~112-627-fold and small sizes could enable more integration events².
- No safety considerations or guidelines for <u>LNP enveloped DNA</u> impurities have been established by regulatory agencies.
- Concerns due to known DNA integration and gene activation/disruption by SV40 promoter/enhancer sequences.

COVID Vaccine Safety Issues: Impurities

- Cancers have been reported in mRNA vaccinated individuals in temporal association to immunization including (38 case reports and study of 96 cases of PDAC outcomes vs IgG4):
 - High grade sarcoma at injection site (case report).
 - Kaposi's sarcoma (cutaneous and conjunctival reported; 2 cases).
 - Non-Hodgkin's Lymphoma (8 cases reported in one publication).
 - Primary Cutaneous Lymphomas (14 cases).
 - Marginal Zone B-cell Lymphoma (case report).
 - Glioblastoma (2 case reports).
 - Gastric and intestinal polyposis (2 case reports).
 - IgG4 correlates with poor survival outcomes in PDAC (96 cases).
 - Axillary Lymphangioma (case report).
 - Multiple Keratoacanthomas (skin cancer; case report).
 - Ph+ B-cell ALL (leukemia; case report).
 - T-cell ALL (leukemia; case report).
 - CMML (leukemia; case report).
 - Multiple Myeloma relapse (case report).
 - Cardiac Myxoma (2 case reports).

COVID Vaccine Safety Issues: Impurities

Gaps in Knowledge

- Extent of DNA contamination in current lots; plasmid biodistribution.
- Genomic integration in tissues or tumors in vaccinated patients; mechanisms.
- Prevalence of adverse outcomes from impurities versus extent of contamination.

- Multiple vaccinations and Spike persistence.
- Cancer mechanisms.
- Variations in host susceptibilities to adverse outcomes.

COVID Vaccine Summary & Recommendations

COVID-19 vaccine safety concerns stem from unexpected biological activities of mRNA gene therapy platforms, raising questions about potential pathogenic mechanisms and HRP.

- □ Proactive and modernized safety surveillance programs including:
 - Blood- and tissue-based monitoring
 - Epidemiologic studies
 - □ Al-driven analyses using reliable, standardized datasets
- Expanded autopsy programs to clarify causality in serious outcomes

- Programs that systematically evaluate COVID-19 vaccine safety
- □ FDA approval policies calibrated to gene therapy–like risks; DNA limits
- Stronger pharmaceutical accountability
- CDC guidelines ensuring transparent risk disclosure, mitigation strategies, and robust informed consent