

Economics of Respiratory Syncytial Virus (RSV) Vaccination in All U.S. Adults≥75 years-old, and Adults aged 60-74 and 50-59 years at Increased Risk

SUMMARY COMPARING MODELS FROM:

GSK, Moderna AND University of Michigan-CDC

Ismael R. Ortega-Sanchez, PhD

NCIRD/CDC

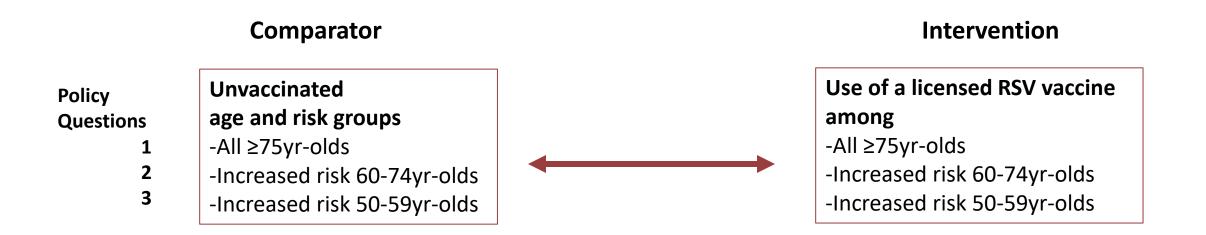
ACIP Meeting, June 26, 2024

Disclaimer: The findings and conclusions in this report are those of the authors and do not necessarily represent the views of the Centers for Disease Control and Prevention.

Conflict of interest

- **GSK model**: David Singer et al., [complete list and affiliations, upon request]
 - GSK manufactures the <u>adjuvanted RSVPreF3</u> vaccine
 - RTI Health Solutions was funded by GSK
- Moderna model: Parinaz Ghaswalla et al., [complete list and affiliations, upon request]
 - Moderna manufacturers the <u>mRNA-1345 (mRESVIA) RSV</u> vaccine
 - Quadrant Health Economics was funded by Moderna
- UM-CDC model: David W Hutton et al. from Univ Michigan, ..., Ismael R Ortega-Sanchez et al. from CDC [complete list and affiliations, upon request]
 - All authors: <u>No conflicts of interest</u>

Three policy questions for economic modeling


- 1. Should a single dose of RSV vaccination (any licensed product) be recommended for **all** adults 75+?
- 2. Should a single dose of RSV vaccination (any licensed product) be recommended for adults 60-74 **at increased risk** of severe RSV disease?
- 3. Should a single dose of RSV vaccination (any licensed product*) be recommended for adults 50-59 at increased risk of severe RSV disease?

*Only a single RSV vaccine (GSK AREXVY) is licensed for use in adults aged 50-59 years who are at increased risk of RSV lower respiratory tract disease.

<u>https://www.fda.gov/vaccines-blood-biologics/arexvy</u> <u>https://www.fda.gov/vaccines-blood-biologics/abrysvo</u> <u>https://www.fda.gov/vaccines-blood-biologics/vaccines/mresvia</u>

Economic analyses

Cost-effectiveness analyses:

Base-case scenarios:

- What is the incremental *cost-effectiveness* of vaccinating adults aged ≥75 years against RSV relative to "No vaccination"?
- What is the incremental *cost-effectiveness* of vaccinating adults aged 60-74 years and 50-59 years at increased risk of severe RSV disease relative to "No vaccination"?

GSK, UM-CDC and Moderna: incremental analyses of vaccination strategies

Policy question	Incremental analysis	GSK model	UM-CD Protein Subunit GSK & Pfizer	C model Moderna Vaccine	Moderna model
1	Vaccinate All ≥75yr-olds <i>vs.</i> No vaccination	Reviewed in June 2023	Included	Included	Included
2	Vaccinate Increased risk 60-74yr-olds <i>vs.</i> No vaccination	Not Included	Included (Eight conditions)*		Included
3	Vaccinate Increased risk 50-59yr-olds <i>vs.</i> No vaccination	Included (Five conditions)**	Included*** (Eight conditions)*	Not Included***	Not Included***

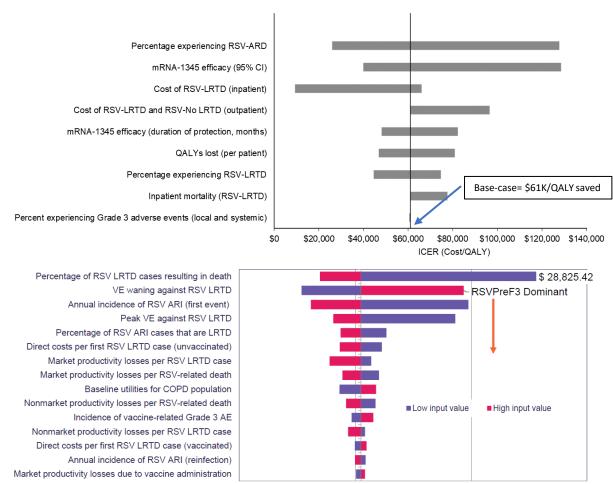
No vaccination was deemed an appropriate comparator under the current shared clinical decision-making recommendation.

* Risk conditions included chronic obstructive pulmonary disease (COPD), asthma, coronary artery disease, chronic kidney disease, diabetes mellitus, severe obesity (BMI ≥40), heart failure, and immune compromise

** Conditions included in GSK model are COPD (base-case), heart failure, coronary artery disease, asthma, diabetes

*** Only a single RSV vaccine (GSK AREXVY) is licensed for use in adults aged 50-59 years who are at increased risk of RSV lower respiratory tract disease. As such, the economic model used GSK-specific inputs for the 50-59-year-old population.

Modeling design and assumptions


	GSK	Moderna	UM-CDC
Static analytical decision-making models	✓	~	✓
Sensitivity analyses (and probabilistic simulation)	$\checkmark(\checkmark)$	$\checkmark(\checkmark)$	√
Hypothetical populations: ≥75yrs old general population and 60-74yrs old at increased risk (50-59yrs old at increased risk)	<mark>(√)</mark>	✓	<mark>√(√)</mark>
Time Frame at least 3 years after a dose of RSV vaccine*	~	\checkmark	\checkmark
Analytic Horizon: Age- and comorbidity-specific life expectancy**	~	~	√
Discount rate: 3%	~	~	✓
Year of economic outcomes measured: 2022/2023	✓	~	√
Societal perspective (and healthcare perspective)	$\checkmark(\checkmark)$	$\checkmark(\checkmark)$	$\checkmark(\checkmark)$

* Base-case in UM-CDC and Moderna models relied on a two-year time frame (three-year timeframe included in scenario analysis) while GSK used a three-year timeframe in the base-case.

In each model, selection of timeframe is based on the duration of protection assumption

** Age and comorbidity specific life expectancy were used for comorbid 50–59-year-old in GSK model.

GSK, Moderna and UM-CDC models comparison: From one-way sensitivity analyses

We will compare:

- Incidence of RSV hospitalization and outpatient care
- Medical and indirect costs
- Initial vaccine effectiveness
- Vaccine waning
- Age and risk groups

\$ 50,000

Moderna and UM-CDC models: Key differences in model inputs, adults ≥60 years

	UM-CDC	Moderna
Incidence of RSV outpatient illness (per 100,000 persons per year)	2,940 for adults ≥60 with cardiopulmonary disease (including COPD) ^a 1,722 for adults ≥60 with other chronic conditions (e.g., diabetes mellitus) ^b	1,833 for adults 60-64 and 2,478 for adults ≥65 years, general population
Incidence of RSV hospitalization (per 100,000 persons per year)	Age-dependent: 198–527 for adults ≥60 with at least one chronic condition ^d 32–121 for adults ≥60 without chronic conditions ^d	66.5 for adults 60-64 and 266.7 for adults ≥65 years, general population
Direct medical costs per RSV hospitalization	Age-dependent: \$21,417 – \$22,425, ^e adjusted using median length of stay by chronic conditions from RSV-NET	\$11,876 (\$8,407 - \$47,512) ^{f,g}

a Adapted from Belongia et al. Open Forum Infect Dis (2018): https://doi.org/10.1093/ofid/ofy316.

b McLaughlin et al. Open Forum Infect Dis (2022): https://doi.org/10.1093/ofid/ofac300

c Adapted from McLaughlin et al. Open Forum Infect Dis (2022): <u>https://doi.org/10.1093/ofid/ofac300</u>; (Outpatient targets include both emergency department and outpatient visits) d RSV-NET, CDC unpublished data. Crude surveillance rates were adjusted using multipliers for the frequency of RSV testing during each season and the sensitivity of RSV diagnostic tests. e Ackerson et al. J Infect Dis (2020). Updated to Q3 2022\$ using GDP Deflator: <u>https://doi.org/10.1093/infdis/jiaa183</u>; Branche et al. Clin Infect Dis (2022): <u>https://doi.org/10.1093/cid/ciab595</u> f Wyffels V et al (2020) A Real-World Analysis of Patient Characteristics and Predictors of Hospitalization Among US Medicare Beneficiaries with Respiratory Syncytial Virus Infection: <u>https://pubmed.ncbi.nlm.nih.gov/32026380/</u> (range values \$8,407 is from Choi and \$47,512 is from Pastula)

g Merative MarketScan Commercial Claims and Encounters (CCAE) and Medicare Supplemental Coordination of Benefits (MDCR) Databases (2016-2019)

GSK and UM-CDC models: Key differences in model inputs, adults 50-59 years

	UM-CDC	GSK
Incidence of RSV outpatient illness (per 100,000 persons per year)	2,940 for adults 50-59 with cardiopulmonary disease (e.g., COPD) ^a 1,722 for adults 50-59 with other chronic conditions (e.g., diabetes mellitus) ^b	2,925 for adults 50-59 with COPD ^a
Incidence of RSV hospitalization (per 100,000 persons per year)	106 for adults 50-59 with at least one chronic condition ^c 169 for adults 50-59 with COPD, specifically ^c	312 for adults 50-59 with COPD ^d
Direct medical costs per RSV hospitalization	\$20,330 for adults 50-59, ^e adjusted using median length of stay, by chronic condition, from RSV-NET	<mark>\$35,308</mark> for adults 50-59 ^f

a Adapted from Belongia et al. Open Forum Infect Dis (2018): https://doi.org/10.1093/ofid/ofy316. Adjusted by a factor of 1.5 for PCR sensitivity (McLaughlin et al. [2022]) b McLaughlin et al. Open Forum Infect Dis (2022): https://doi.org/10.1093/ofid/ofy316. Adjusted by a factor of 1.5 for PCR sensitivity (McLaughlin et al. [2022]) b McLaughlin et al. Open Forum Infect Dis (2022): https://doi.org/10.1093/ofid/ofac300

c RSV-NET, CDC unpublished data. Crude surveillance rates were adjusted using multipliers for the frequency of RSV testing during each season and the sensitivity of RSV diagnostic tests.

d Adapted from Branche et al. (2022) across Rochester and New York City sites adjusted by a factor of 1.5 for PCR sensitivity (McLaughlin et al. [2022])

e Ackerson et al. J Infect Dis (2020). Updated to Q3 2022\$ using GDP Deflator: https://doi.org/10.1093/infdis/jiaa183; Branche et al. Clin Infect Dis (2022): https://doi.org/10.1093/cid/ciab595 f CMS Medicare Inpatient Hospitals - by Geography and Service (CMS, 2023a); (DRG Average Payments from 2019 dataset); Falsey et al. (2005); KFF (2020)

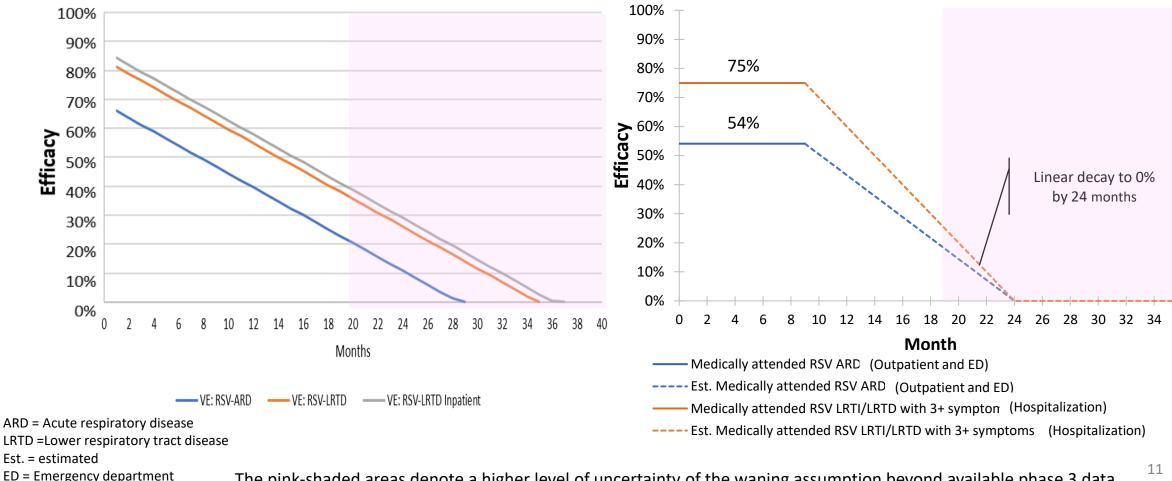
Moderna and UM-CDC: Initial or Early Peak of Vaccine Efficacy & Decline

		UM-CDC Model	Moderna Model
		Moderna vaccine	Moderna vaccine
Vaccine efficacy against RSV <u>outpatient</u> illness ^a Year	· 1	54 (0–83) ^b	<mark>Peak: 68.4</mark> (50.9–79.7) ^c
Year	ır 2	Linear decline reaching zero at month 24	40.1 Weighted least square regression
Vaccine efficacy against RSV <u>hospitalization</u> and emergency department visit ^a Year	r 1	75 (0–95) ^d	<mark>Peak: 86.7</mark> (41.9–97.0) ^e
Yea	ır 2	Linear decline reaching zero at month 24	57.9 Weighted least square regression

a Efficacy over median 19 months (Moderna) as reported in the phase 3 clinical trials

b Moderna phase 3 trial data; VE against medically attended acute respiratory illness

c Moderna mRNA-1345 Efficacy from the Phase 2/3 Clinical Trial for RSV-ARD (primary analysis: 1-4 months)


d Moderna phase 3 trial data; VE against medically attended lower respiratory tract disease with ≥3 lower respiratory symptoms

e Moderna mRNA-1345 Efficacy from the Phase 2/3 Clinical Trial for RSV-LRTD with ≥2 symptoms associated with shortness of breath (primary analysis: 1-4 months)

Moderna and UM-CDC: Assumption on waning of vaccine effectiveness (VE) per outcome

UM-CDC (two-year model timeframe)

MODERNA (two-year model timeframe)

The pink-shaded areas denote a higher level of uncertainty of the waning assumption beyond available phase 3 data

GSK and **UM-CDC**:

Initial or Early Peak of Vaccine Efficacy & Decline

		UM-CDC Model	GSK Model
		GSK vaccine	GSK vaccine
Vaccine efficacy against RSV <u>outpatient</u> illness ^a	Year 1	79 (54–92) ^ь	Peak: 73.3 (57.9–87.4) ^c
	Year 2+	28 (0–60) ^ь	Weighted linear regression over time (-2.1% monthly waning) ^c
Vaccine efficacy against RSV <u>hospitalization</u> and emergency department visit ^a	Year 1	84 (74–90) ^d	Peak: 86.5 (67.7–98.7) ^f
	Year 2+	60 (43–72) ^e	Weighted linear regression over time (-1.8% monthly waning) ^f

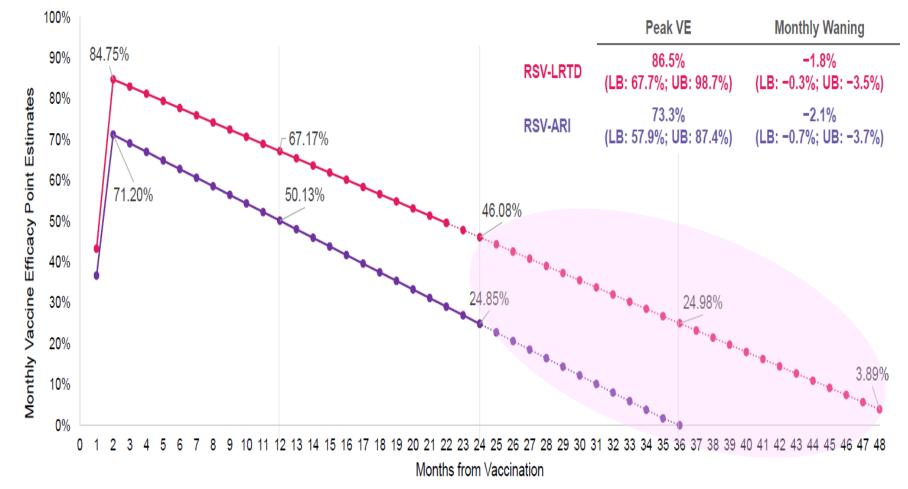
a Efficacy over median 23 months follow up (GSK) as reported in the phase 3 clinical trials

b GSK phase 3 trial data; VE against medically attended acute respiratory illness

c GSK phase 3 trial data; VE against acute respiratory illness, regardless of whether medically attended. During month 1, 50% of peak VE is assumed, with linear waning in months 2+ based on weighted linear regression.

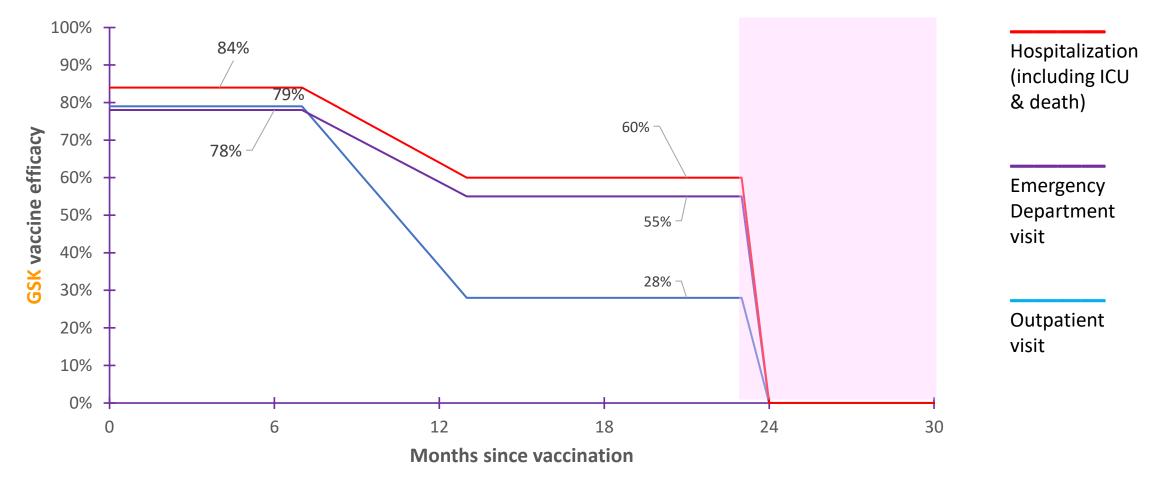
d Observational vaccine effectiveness, GSK-specific.

e Proportional waning applied to Season 1 efficacy, from GSK phase 3 trial efficacy against lower respiratory tract disease (Season 2 vs. Season 1)


f GSK phase 3 trial data; VE against lower respiratory tract disease, regardless of whether medically attended. During month 1, 50% of peak VE is assumed, with linear waning in months 2+ based on weighted linear regression.

GSK: Residual Vaccine Effectiveness (VE) analyses (3-year timeframe)

RSV LRTD: 50% of peak VE (86.5%) assumed in month 1, peak VE declines by 1.8% monthly rate beginning in month 2 though 23month follow up of trial. Assumed to follow linear decline trend afterwards. Reaches 0% near month 48


RSV ARI: 50% of peak VE (73.3%) assumed in month 1, peak VE declines by 2.1% monthly rate beginning in month 2 though 23month follow up of trial. Assumed to follow linear decline trend afterwards. Reaches 0% in month 36

Source: GSK Technical report and Slides June 2024 LRTD= Lower respiratory tract disease ARI= Acute respiratory illness LB= Lower bound

The pink-shaded area denotes a higher level of uncertainty of the waning assumption beyond available phase 3 data

UM-CDC: Assumption of waning of vaccine efficacy (**GSK** vaccine) (**2-year timeframe**)

The pink-shaded area denotes a higher level of uncertainty of the waning assumption beyond available phase 3 data

Policy questions 1 & 2: Moderna and UM-CDC

Policy question 1. What is the incremental <u>cost-effectiveness</u> of vaccinating <u>all</u> <u>adults aged ≥75</u> <u>years old</u> against RSV illness *relative* to "No vaccination"?

	Moderna model	UM-CDC model
	Moderna vaccine	Moderna vaccine
\$/QALY saved (2-year timeframe)	\$55,995*	\$66,287
\$/QALY saved (3-year timeframe)	Not reported	\$42,495

Policy question 2: What is the incremental <u>cost-effectiveness</u> of vaccinating <u>adults aged 60-74 years old at</u> <u>increased risk</u> of severe RSV illness *relative* to "No vaccination"?

\$/QALY saved (2-year timeframe)	\$89,064**
\$/QALY saved (3-year timeframe)	Not reported

\$80,953				
\$49,198				

* Target population: All adults ≥75yrs (Table 27, Moderna Technical report June13,2024)

** Target population: High-risk 60-74yrs (Table 27, Moderna Technical report June13,2024)

Policy question 3: GSK and UM-CDC

Policy question 3: What is the incremental <u>cost-effectiveness</u> of vaccinating <u>adults aged 50-59</u> <u>years at increased risk</u> of severe RSV illness *relative* to "No vaccination"?

	GSK*	UM-CDC**
\$/QALY saved (2-year timeframe)	Not reported	\$154,501
\$/QALY saved (3-year timeframe)	Cost-saving to \$2,445	\$112,949

* GSK estimated cost-saving values for four high risk conditions: COPD, heart failure, CAD and Diabetes. For Asthma, GSK estimated societal cost of \$2,445/ QALY saved ** In the base case (2-year vaccine effectiveness timeframe), Michigan estimated a <u>societal cost of \$154,501 /QALY saved</u> for adults with at least one chronic condition (COPD, asthma, CAD, CKD, Severe Obesity, or Diabetes). For individual conditions, societal costs ranged from \$30,720 (CKD) to \$171,661 (Diabetes) per QALY saved. When evaluating other specific conditions not included in "at least one", \$/QALY ranged from cost-saving (lung transplant, allogeneic hematopoietic cell transplant) to \$14,335 (heart failure) and \$14,521 (autologous hematopoietic cell transplant).

Limitations

- Factors not considered that may result in underestimating the cost-effectiveness of RSV vaccination
 - No impact of RSV on long-term prognosis of COPD or of other higher risk conditions
 - No indirect effects of vaccination (i.e., no protection against RSV transmission)
 - No productivity or quality of life impact on caregivers during RSV illness
- All models *partially* include RSV-related medical costs incurred <u>after discharge</u> from an RSV-associated hospitalization or emergency department visit: Stay in long-term care or rehabilitation facility
- Manufacturer models <u>partially</u> include potential vaccine-associated serious adverse events (SAEs) or from Guillain Barre syndrome (GBS): Quality of life impact, resource utilization, and costs associated with SAEs, including GBS specifically for protein subunit RSV vaccines.
- Vaccine efficacy beyond median clinical trial follow-up time (beyond 19 months, Moderna; or 23 months, GSK) is <u>unknown</u>
 - All 3 models assumed non-zero <u>declining</u> efficacy beyond trial time data
- All 3 models assumed seasonal vaccination (with optimal timing in the late summer and early fall) without off-RSV-season vaccination impact.

Conclusion

- Differences in key inputs and assumptions among GSK, Moderna and UM-CDC models explain differences in results:
 - Annual incidence of RSV hospitalization and outpatient disease
 - Initial vaccine effectiveness and waning of protection
 - Medical cost per RSV hospitalization

Resulting ICERs for policy questions vary by age and high-risk group:

- 1: Vaccinating <u>all adults aged ≥75 years old</u> against RSV illness
 - Moderna and UM-CDC models reported societal costs between \$51K to \$66K per QALY saved
- 2: Vaccinating *adults aged 60-74 years old at higher risk* of severe RSV disease
 - Moderna and UM-CDC models reported societal costs between \$61K to \$89K per QALY saved
- 3: Vaccinating *adults aged 50-59 years old at higher risk* showed more discrepant \$/QALY ratios
 - Outcomes ranged from societal *cost-saving* (GSK) to \$154K per QALY saved (UM-CDC)

Overall, vaccination would significantly reduce RSV disease burden in adults 50-59 and 60-74 years old at higher risk of RSV disease and in the general population of adults aged ≥75 years old.

• Efficacy clinical trial data and assumptions support impact on disease reduction

Acknowledgements

From NCIRD/CORVD

- Michael Melgar
- Amadea Britton
- Katherine Fleming-Dutra

Also:

- Adult RSV working group members
- Andrew Leidner and the Econ team from NCRID/ISD

End of Summary

For more information, contact CDC 1-800-CDC-INFO (232-4636) TTY: 1-888-232-6348 www.cdc.gov

The findings and conclusions in this report are those of the authors and do not necessarily represent the official position of the Centers for Disease Control and Prevention.

