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Abstract   

Three-dimensional velocity tomograms were generated to image the stress redistribution around an underground coal longwall panel 
to produce a better understanding of the mechanisms that lead to ground failure, especially rockbursts. Mining-induced microseismic 
events provided passive sources for the three-dimensional velocity tomography. Surface-mounted geophones monitored microseismic 
activity for 18 days. Eighteen tomograms were generated and high-velocity regions correlated with high abutment stresses predicted by 
numerical modeling. Additionally, the high-velocity regions were observed to redistribute as the longwall face retreated, indicating that 
velocity tomography may be an appropriate technology for monitoring stress redistribution in underground mines. 
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1.   Introduction   

Roof characterization and control pose significant 
challenges to the underground mining industry. Approxi­
mately one-third of fatalities reported in underground 
mines in the United States between 2001 and 2005 were the 
result of fall of roof, rib, or face [1]. In addition to 
accounting for a significant portion of fatal accidents, these 
incidents also result in a considerable portion of lost time 
injuries, translating into substantial losses in production. 

Some of the most unpredictable and violent types of roof 
failure are rockbursts, often referred to in coal mines as 
bumps or bounces. Rockbursts are sudden and violent 
failures of overstressed rock that can cause expulsion of 
material and airblasts. Rockbursts not only pose a danger 
to miners due to flying material, but they can cause 
ventilation changes, and may also propagate dust and gas 
into the air, creating a potentially explosive environment 
[2]. Rockbursts and bumps generally occur in mines that 
have at least 300 m (about 1000 ft) of cover and are either 
         
  
          

         
           

      
          

          
          
            
          

       
       

       
         

         
          
         

          
        

        
          
         

         
  
          

         
           

      
          

          
          

            
          

       
       

       
         

         
          

         
          
        

        
          
         

overlain or underlain by a massive and competent geologic 
formation [2,3]. 
Velocity tomography is a technology that can be used to 

ascertain the relative state of stress and the redistribution 
of stress in a rock mass. Velocity tomography relies on the 
transmission of seismic waves, specifically p-waves, 
through a rock mass. The velocity of the wave is 
determined, and the mass is divided into voxels, or cubes, 
with a velocity calculated for each cube. The sharpness of 
the image is dependent on the size of the voxel. The voxel 
size must be optimized to insure that all voxels are 
traversed by a sufficient number of rays. 
Velocity tomography is useful for inferring stress 

redistribution. During the pre-failure regime, the p-wave 
velocity usually increases linearly with stress at lower stress 
levels, and then plateaus at higher stress levels. This 
increase of p-wave velocity with stress is attributed to the 
closure of cracks and pore space [4–8]. With increasing 
levels of structural damage, the p-wave velocity can drop to 
values less than observed in the initial state. 
In order to implement velocity tomography, a source 

must be selected for the seismic waves. Sources may be 
active or passive. Active sources, such as hammer strikes, 
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blasts, or cutting equipment are advantageous because they 
allow for consistent and predictable seismic raypath 
distribution. However, active sources are not always 
feasible for relatively long time-lapse studies, since they 
usually require the presence of a person to initiate the 
source and record the time and location. Passive sources 
allow for remote, continuous monitoring of a rock mass. 
However, they are also associated with a unique set of 
challenges, including accurate source location and inade­
quate or irregular raypath density. Mining-induced micro­
seismic events are well suited for utilization as passive 
sources in velocity tomography. The events are usually 
located in areas of active mining that are the target areas 
for velocity tomography. Microseismic events in active 
mining areas are frequent enough to allow for adequate 
raypath density. Numerous studies have shown that 
analyses of microseismic activity provides insight into 
ground failure processes [9–11]. Microseismic sources allow 
for noninvasive, remote time-lapse monitoring over a 
period of days, weeks, or even months. 

The site chosen for this study was an underground 
longwall coal mine. A retreating longwall panel was 
monitored for 18 days. The site has considerable micro­
seismic activity, making it ideal for passive source velocity 
tomography. 

2.   Tomography   

Tomography has become an essential diagnostic tool in 
the medical industry; a CAT-scan, computer-assisted 
tomography, is one example [12]. Tomography also has 
many geotechnical applications including study of faults 
and ore body delineation [13,14]. Tomography has been 
applied as a tool for imaging stress in laboratory rock 
specimens [15–17] and in underground mines with moder­
ate success. 

Stress distribution in numerous underground structures 
has been imaged, including pillars, tunnels, and longwall 
panels. Pillars have been studied extensively due to their 
relatively small scale and predictable stress concentrations. 
Friedel et al. conducted active source imaging of the 
footprint left by two coal pillars on the mine floor, 
determining that velocity increased as the face approached 
the pillar and that velocity decreases around the pillar edge 
corresponded with failure due to spalling [18]. Active 
source imaging has been implemented for pillar tomogra­
phy at Homestake Mine [19], and at Edgar Experimental 
Mine [20]. Watanabe and Sassa also used active sources to 
image both a pillar and a triangular area between two drifts 
[21], while Manthei used active source geometry to image 
pillars in a potash mine [22]. 

Tunnels have also been studied extensively to determine 
stress redistribution around openings. Many of these 
studies have been conducted at the Underground Research 
Laboratory (URL) in Canada; passive source [23,24] and 
active source studies [17] of tunnels at the URL can be 
found in the literature. 
         
       

        
         
         
          

         
        

       
       
         
         

         
        

        
         

 
        

          
          
         

           
             

              
             

          
       

         
         

         
         

            
          
         

         
        

        

         
       

        
        
         

          
         

        
       

       
         

         
         

        
        
         

 
        

          
          
         

           
             

           
           

         
       

         
         

         
         

            
          

         
         

        
        

Tunnel and pillar studies are relatively simple since the 
small-scale geometry allows for optimum source and 
receiver placement. Larger scale studies are more difficult 
to design, but have been conducted successfully. Körmendi 
et al. used in-seam receivers with active source geometry 
for a longwall panel in an underground coal mine, and 
found that high-velocity areas advanced with the face and 
were typical of stress redistribution encountered on a 
longwall [25]. Active source tomograms have been com­
pared to ‘‘simulated passive source’’ tomograms [26]. 
Active sources have been used in metal mines, and high-
velocity areas were imaged ahead of working faces [24,27]. 
A longwall shearer provided an active source to produce 
tomograms of a longwall panel showing high-stress areas 
from mid-face towards the tailgate [28]. No long-term time-
lapse studies utilizing passive sources are found in the 
literature. 
Velocity tomography relies on a simple relationship, that 

the velocity along a seismic ray is the raypath distance 
divided by the time to travel between the source and 
receiver. From this relationship, it is understood that the 
time is the integral of the inverse velocity, 1/v, or slowness, 
p, from the source to the receiver as shown in Eq. (1) [29]: 
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M X

ti ¼ pjdij ði ¼ 1; . . . ; NÞ, (3) 
j¼1 

where v is the velocity (m/s), d is the distance (m), t is the 
travel time (s), p is the slowness (s/m), N is the total number 
of rays, and M is the number of voxels [1]. 
The microseismic event location and subsequent raypath 

are calculated using an initial velocity model to represent 
the rock mass. The velocity model is developed from 
measured data and allows for calculation of the distance 
and travel time along the raypath. However, the velocity, 
distance, and time in an individual voxel or grid cell are not 
known. Although the distance in each grid cell can be 
readily solved, the time and velocity are still unknown. 
Arranging the time, distance, and slowness for each voxel 
into matrices, the velocity can be determined through 
inverse theory as shown in Eq. (4) [29]: 

          T DP P D-1T, (4) ¼ ! ¼ 

where   T   is   the   travel   time   per   ray   matrix   (1   x N),   ti  is   the   
travel   time   of   the   ith   ray,   D   is   the   distance   per   ray   per   voxel   
matrix   (N x M),   dij  is   the   distance   of   the   ith   ray   in   the   jth   
voxel,   P   is   the   slowness   per   grid   cell   matrix   (1   x M),   and   pj  
is   the   slowness   of   the   jth   voxel.   
Usually,   the   inverse   problem   is   either   underdetermined   

(more   voxels   than   rays),   or   overdetermined   (more   rays   
than   voxels)   [22,30,31].   The   most   effective   way   to   solve   this   
problem   is   by   an   iterative   process.   
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3. Case study 

3.1. Site characteristics 

Data for this study were collected between July 7, 1997 
and August 8, 1997, at an underground coal mine in the 
western United States. The mine employs longwall mining, 
and has produced an average of 7.5 million tons per year 
between 1995 and 2004 [32]. The coal seam ranges in 
thickness from 2.6 to 3.0 m (8.5–9.8 ft) with a depth of 
approximately 350 m (1150 ft). The mine operates longwall 
panels that are approximately 5490 m (17,980 ft) long and 
250 m (815 ft) wide. Over the course of the study, the face 
advanced 431 m (1415 ft), averaging about 24 m (79 ft) per 
day. Sixteen geophones were assembled on the surface to 
monitor and locate microseismic events. Fig. 1 displays a 
plan view of the geophone locations over the portion of the 
longwall panel of interest. The geophones provide ade­
quate spatial coverage of the entire area of study. 

3.2.  Inversion  parameters  

The data were analyzed using GeoTOM, a commercial 
program that generates tomograms through the simulta­
neous iterative reconstructive technique (SIRT) [33]. SIRT 
is an appropriate algorithm because the solution tends to 
both converge and diverge slowly, so that the solution is 
relatively stable [33,34]. A voxel size of 15 m per side 
(approximately 50 ft per side) was input into the program. 
This voxel size was determined to be sufficiently small to 
ascertain the general stress trend, but sufficiently large that 
artifacts would not disrupt interpretation of the tomogram. 
Ideal voxel size has an edge length equal to the typical 
wavelength of the rays [21], and at the smallest half of the 
typical wavelength [18]. The average p-wave velocity for 
this data set is 3600 m/s (12,000 ft/s) with a typical 
frequency content of 30 Hz, indicating a wavelength of 
              
       
              
       

Fig. 1. Plan view of the area under study. The gray area indicates total 
area mined over 18 days of study. 
            
       

           
         

           
           
        
         
          

          
            
         

        
             

        
          

         
       

         
        

          

            
       

           
         

           
           

        
         

          
          

            
         

        
             

        
          

         
       

         
        

          

120 m and, therefore, ideal voxel size of 120 m. This voxel 
size would not adequately delineate expected velocity 
features. Many of the 15 m voxels are traversed by over 
1000 rays, so they are well constrained. However, by 
decreasing the voxel size there is a risk of creating artifacts 
in the model. Artifacts are broadly defined as an error in 
the reconstructed image due to an inaccuracy of measure­
ment [35] or velocity anomalies that have been displaced 
relative to their proper locations [36]. In this case, artifacts 
are velocity anomalies that do not represent a physical state 
or structure in the model, and they may occur in areas of 
the model where ray coverage is poor. The inversion 
algorithm assigns these abnormally high or low velocities 
as it attempts to fit the model to the data. In order to 
decrease the voxel size without creating artifacts, velocities 
for voxels that were not traversed by any rays were 
removed from the results. The remaining data were input 
into a three-dimensional modeling program, and the 
missing values were assigned based on the nearest voxels, 
using an inverse distance algorithm. Straight raypaths for 
day 18 of the study are displayed in Fig. 2. 
Additional   input   parameters,   including   an   initial   velocity   

model,   anisotropy,   smoothing,   and   the   number   of   curved   
and   straight   ray   iterations   to   be   performed,   were   required.   
An   initial   velocity   model   is   a   three-dimensional   model   of   
              
             

               
             
     

              
             

               
             

     

Fig. 2. Straight raypaths for day 18 of the study. The side view (top) 
shows the area of interest outlined in gray, with the geophones located on 
the surface in gray and the location of the coal seam plotted in dark gray. 
The plan view (bottom) shows the area of interest outlined in gray, with 
the geophone locations in gray. 



ARTICLE IN PRESS
          
          

         
         

         
        

        
       

         

          
          

         
         

         
        

        
       

         

the p-wave velocity of the rock mass based on geophysical 
data that has been previously collected. SIRT is an iterative 
technique; the algorithm must have an initial velocity value 
to perturb the first iteration. The initial velocity model 
allows the inversion to be calculated more efficiently and 
accurately. The initial velocity model was provided with 
the raw data from National Institute for Occupational 
Safety and Health (NIOSH), and a one-dimensional 
interpretation of the model is displayed in Fig. 3. 

Anisotropy   refers   to   the   variation   of   a   characteristic   of   a   
material   with   the   direction   of   measurement   [37].   In   this   
situation,   anisotropy   refers   to   the   variation   in   p-wave   
velocity   as   measured   parallel   or   perpendicular   to   the   
bedding   layers.   Both   the   direction   and   magnitude   of   the   
anisotropy   were   inputted.   The   anisotropy   vector   is   taken   to   
be   normal   to   the   dipping   layers   of   the   initial   velocity   model   
             
           

  

             
           

  

Fig. 3. Initial velocity model. The coal seam is displayed in black at 
approximately 1700 m. The model is layered normal to the given 
anisotropy vector. 
       
        

       
        

and   is   [-0.068,   0.057,   0.996],   as   provided   by   NIOSH.   The   
anisotropy   magnitude   refers   to   the   ratio   of   the   velocity   
measured   orthogonally   to   the   anisotropy   vector   to   the   
velocity   that   has   been   measured   parallel   to   the   anisotropy   
vector.   The   magnitude   of   anisotropy   was   determined   
experimentally   by   inverting   the   data   with   anisotropy   
magnitudes   varying   from   0.8   to   1.2,   with   the   goal   of   
minimizing   the   travel   time   residuals   resulting   from   the   
inversion.   An   anisotropy   magnitude   of   1.1   minimized   the   
residuals,   indicating   that   this   value   improves   the   model   so   
that   it   better   fits   the   data.   This   value   indicates   that   the   
velocity   along   the   seismic   ray   is   1.1   times   faster   when   the   
ray   is   oriented   orthogonal   to   the   anisotropy   vector   as   
opposed   to   when   the   ray   is   parallel   to   the   vector.   An   
anisotropy   magnitude   of   1.1   is   reasonable   as   Cox   states   
that   published   values   generally   range   from   1.0   to   1.45   [38].   
Tomographic   inversions   were   performed   assuming   both   

straight   and   curved   raypaths.   The   straight   ray   calculation   is   
simply   the   straight   line   distance   between   the   source   and   the   
receiver,   while   the   curved   ray   calculation   allows   for   ray   
bending   according   to   Snell’s   Law.   Snell’s   Law   implies   that   
for   the   layered   initial   velocity   model   the   straight   ray   
assumption   is   not   valid.   However,   the   root-mean-square   
travel   time   residuals   were   actually   smaller   for   the   straight   ray   
assumption   than   for   the   curved   ray   assumption,   while   the   
sum   of   the   residuals   were   significantly   smaller   for   the   curved   
ray   assumption.   The   sum   of   the   residuals   is   simply   the   sum   
of   the   travel   time   residuals   for   each   ray   in   the   iteration   and   is   
not   a   measure   of   the   magnitude   of   the   residuals,   but   rather   of   
their   distribution   about   zero.   The   higher   sum   of   the   residuals   
for   the   straight   ray   assumption   indicates   that   the   straight   ray   
algorithm   consistently   underestimates   the   raypath   length.   
Clement   and   Knoll   generated   synthetic   tomograms   for   cross   
borehole   data   with   straight   and   curved   ray   algorithms   and   
found   similar   results   in   their   tests;   the   root-mean-square   
error   was   smaller   for   the   straight   ray   algorithm   than   for   the   
curved   ray   algorithm.   They   still   concluded   that   the   curved   
ray   algorithm   was   favorable   because   it   more   accurately   
portrayed   their   model   [39].   By   the   same   logic,   it   was   
determined   that   the   curved   ray   assumption   was   appropriate   
for   this   data,   and   each   tomogram   was   generated   with   10   
curved   ray   iterations.   
A   smoothing   constant   was   applied   in   all   directions.   

Smoothing   replaces   the   velocity   value   at   a   node   by   a   
weighted   average   of   the   velocity   at   that   node   and   the   
surrounding   nodes.   Smoothing   can   help   to   remove   incon­
sistencies   in   the   model,   but   if   a   model   is   oversmoothed   
important   anomalies   can   be   removed.   A   fairly   small   
smoothing   constant   of   0.02   was   applied   to   surrounding   
nodes   in   order   to   avoid   oversmoothing.   

4.   Results   

4.1.  Abutment  stress  

Major stress features resulting from abutment stress 
were expected to be imaged through velocity tomography. 
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Abutment stress is a result of stress redistribution due to 
the extraction of ore, and occurs along or near the 
boundary where material has been removed [40]. An
undisturbed coal seam with competent roof and floor 
strata will have a fairly uniform stress distribution. As coal 
is removed this distribution is disrupted and the load shifts 
to another intact area. In longwall mining, this stress is 
transferred immediately in front of the face, and to the 
sides of the panel (headgate and tailgate). Failure of the 
roof strata behind the longwall shields is termed the ‘gob’ 
and allows for pressure relief. 

Very competent strata above a longwall system, such as 
massive sandstone, may not cave immediately, contributing 
to extremely high abutment stress in front of the face which 
can result in rockbursts at the face, and damage to shields 
due to dynamic loading [41]. The exact distribution of the 
abutment load is dependent upon the properties of the roof 
strata and the mining geometry, but abutment stress is 
usually the largest on the tailgate, if it is adjacent to a 
previously mined out panel. Front abutment pressure is 
detectable at a lateral distance ahead of the face 
approximately equal to the overburden depth, and 
typically reaches a maximum at a distance of one-tenth 
the overburden depth. In weak roof, maximum abutment 
stress along the faceline occurs at the headgate and tailgate 
corners, but in more competent roof a peak may occur 
mid-face, depending upon the face length [41]. In addition 
to vertical stress redistribution, joints, faults, inhomoge­
neous layering, and horizontal stress orientation may 
contribute to larger abutment stresses and more erratic 
failure. Even in optimum conditions roof failure behind 
longwall shields is rarely uniform [42]. 

4.2.  Velocity  tomograms  and  comparison  to  numerical  
modeling  

Tomograms were generated for each of the 18 days of 
the study. Six of these images are presented in Fig. 4. 
Three-dimensional tomograms were generated, and then 
sliced laterally at seam level, at an elevation of approxi­
mately 1690 m. Plan views for days 2, 5, 7, 12, 15, 18 are 
displayed with the mining geometry overlain onto the 
tomogram. In these images, three distinct features can be 
observed. First, a high-velocity region is identifiable 
immediately in front of the face for each of the days of 
the study. Second, a high-velocity region is visible to 
varying degrees running from the active face down the 
tailgate alongside the gob. Both of these regions are areas 
where high abutment stress is expected. Finally, a low-
velocity feature moves in conjunction with the face in the 
location of the gob, as expected. 

In order to validate the behavior observed on the 
tomograms, a simple numerical model of the panel was 
generated to observe expected vertical stress. The LAMO­

DEL (Laminate Model) program was utilized due to its 
relative ease of use and specific application to tabular 
deposits. LAMODEL is a boundary element, displace­
      
          

        
        

           
          

         
        
        

 

       
       
          

        
        

         
           
        

         
         
       

   
        

           
       

        
       
        

          
          
            

      
          
         

        
         

          
        

         
      

         
          

      
       

     
           
        
          

     
          
        
        

        
        

      
          

        
        

          
          

         
       

        
 

       
       

          
        

        
         

           
        

         
        

       
   

        
           

      
        

       
       

          
          

            
      

          
         

        
         

          
        

        
      

         
          

      
       

     
           
        

          
     
          
        
        

        
        

ment–discontinuity routine that calculates stress for 
tabular seams. It simulates the overburden as a stack of 
homogenous isotropic layers with the same Poisson’s ratio, 
Young’s modulus, and frictionless interfaces [43]. In  Fig. 5, 
the LAMODEL plot for day 18 of the study is displayed 
alongside the tomogram for the same day. Many of the 
same features are evident. Additionally, Fig. 6 shows the 
LAMODEL stress distribution as a wireframe plot that 
emphasizes the relatively higher stress predicted on the 
tailgate. 

5.   Conclusions   

The tomograms generated from the 18-day study 
produced repeatable high-velocity features in areas that 
typically exhibit high stress on longwall panels and in areas 
that numerical modeling predicts will encounter high stress, 
including a high-velocity region that is consistently present 
immediately ahead of the active face and a high-velocity 
region that is visible along the tailgate side of the panel. 
Also, these regions are observed to redistribute with 
longwall face retreat. The tomograms do not display the 
same degree of resolution as the LAMODEL stress plots, 
and velocity patterns corresponding with individual pillars 
cannot be ascertained. 
While the velocity distribution shown on the tomograms 

is not as uniform as the stress distribution displayed in the 
LAMODEL plots, true stress redistribution is rarely 
perfectly uniform due to inhomogeneity in both geologic 
properties and fracture and deformation. Additionally, the 
LAMODEL plots display more specific stress details. Stress 
on each of the headgate and tailgate pillars is identifiable, 
while no such detail is visible on the velocity tomograms. 
One reason for the lack of detail on the tomograms may be 
insufficient ray coverage. While the mining-induced micro­
seismic events are ideal for long-term sources they do not 
provide the dense and uniform ray coverage provided by 
active sources. Also, the nature of the velocity–stress 
relationship causes some ambiguity in the image. In rocks 
with high elastic moduli stress increase may not translate to 
high p-wave velocity, so while differences in high-stress 
regions are discernible on the LAMODEL plots, they are 
not discernible on the velocity tomograms. 
Several improvements can be made to this method to 

provide better information about the state of stress in the 
rock mass including implementation of attenuation tomo­
graphy, double difference tomography, and adaptive mesh. 
Attenuation tomography could provide additional infor­
mation about the degree of fracture in the rock mass, while 
double difference tomography and the application of an 
adaptive mesh could assist with some of the challenges of 
passive source implementation. Double difference tomo­
graphy combines the inversion of the velocity data with the 
location of the microseismic events, optimizing both [44]. 
Adaptive mesh tomography allows for variation in voxel 
size to account for nonuniform ray coverage [45]. Addi­
tionally, quantification of uncertainty will be addressed in 
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Fig. 4. Plan view velocity tomograms at seam level, z ¼ 1695 m. Days 2, 5, 7, 12, 15, and 18 of the study are shown. The face is retreating in the southwest 
direction. 
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Fig. 5. LAMODEL stress plot (left) and velocity tomogram (right), plan view at seam level, z ¼ 1695 m, for day 18. High-velocity areas corresponding to 
the forward abutment and tailgate side abutment zones are circled. 

                        
 

                       
 

Fig. 6. LAMODEL wireframe stress plot, illustrating the relatively higher stress predicted on the tailgate side of the panel, along with the front abutment 
stress. 
                
              

                
                

                  
    

        

future studies. By applying these techniques in concert, 
time-lapse tomographic images of velocity distributions in 
underground mines can be improved and utilized for 
noninvasive examination of stress redistribution in a rock 
mass, thereby increasing the safety and efficiency of the 
mining process. 
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