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Abstract 

Computer-related accidents have caused injuries and fatalities  in mining as well as other indus­
tries. Normal accident theory  (NAT) explains  that some accidents are inevitable  because of system 
complexity. NAT is  a  classic  argument  in  organizational sociology  although it  has  been  criticized as 
having imprecise deWnitions  and  lacking  criteria  for  quantifying complexity. These  limitations  are 
addressed by a  unique  approach that  recasts  this  organizational theory  into an engineering-based 
methodology  to quantify  NAT complexities  of  computer-based  systems. 

In this  approach complexity is  categorized as  external or  internal. External complexity is  deWned by 
the  external behavior  of  a system, and is  quantiWed by these  dependent variables: system  predictability, 
observability,  and usability. Dependent  variable  data  contain the  perceptions  of  32 subjects  running 
simulations  of  a system. The  system’s  internal complexity  is  characterized by modeling system-level 
requirements  with the  software  cost  reduction (SCR)  formal method. Model attributes  are  quantiWed 
using 15 graph-theoretical metrics—the independent  variables. Five of  15 metrics are  correlated  with 
the  dependent  variables  as  evidenced by structure  correlations  exceeding 0.25, with standard errors 
<0.10 and a  95% conWdence  interval. The  results  also show  that  the  system  predictability, observabil­
ity, and usability  decreased as  NAT complexities increased. This  research takes  a step forward in oper­
ationalizing NAT for computerized systems. The  research beneWts mining and other  industries  as  well. 



1. Introduction 

Increasingly, computer  technology is being embedded into  a  wide  variety of systems. 
This technology can enable  added Xexibility,  provide  new  functionality,  and help make  sys­
tems  more  cost-competitive.  Thus, traditional hardwired electro-mechanical  and analog 
systems,  having  well-known and predictable  failure  modes, are  often  replaced with  com­
puter  hardware  and software.  This widespread  use  increases  our  dependence  on and expo­
sure  to computerized  systems—more importantly, it greatly impacts safety. 

Computer-related accidents have  caused harm  to  the  environment,  injuries,  and fatali­
ties. Over  400  computer-related accidents were  documented up to  1995 (Neumann, 1995); 
it  was estimated  that 2000  deaths were  computer-related as  of  1994  (MacKenzie, 1994). 
The  safety  issues of computerized systems have  extended to  the  mining industry.  Tradition­
ally  thought of as low-tech,  the  industry is  now using  complex,  computerized  mining sys­
tems  such as “driverless” underground and surface  haulage  vehicles, longwall  mining 
machines,  hoists and elevators, and mine  atmospheric  monitoring systems. From  1995 to 
2001,  11 computer-related mining incidents in the  US  were  reported by  the  Mine  Safety 
and Health Administration;  71 computer-related mining incidents were  reported in Aus­
tralia (Sammarco,  2003). 

The  problem  is that we  are  ill-equipped to identify,  understand, and  manage  the  particu­
lar safety  issues  of computerized  systems. Systems utilizing computer  technology are  more 
complex;  as a  result,  new hazards are created that  are diYcult  to  recognize or  mitigate with 
traditional  safety  techniques. Traditional safety engineering techniques are  being  stretched 
to the  limit because  of many  factors, including the  “fast pace  of technological  change,” 
“new types  of hazards,” and “increasing complexity and coupling” (Leveson,  2004). 

To engineer safer computer-based systems,  new  approaches  are  needed. One  approach 
establishes a new accident model based on systems  theory (Leveson,  2004). The  model is 
intended as a  theoretical foundation for new  safety analyses and approaches. Another 
approach  uses an interdisciplinary complexity model encompassing the  six  domains of 
mathematics, computer  science,  economics, psychology  and cognitive  sciences, social sci­
ence,  and  system science  (Coskun and Grabowski, 2001). 

Addressing complexity is  important in safety  analysis because  as  computer-based sys­
tems  proliferate,  system  sophistication and complexity  escalate  and increase  the likelihood 
of design errors and the  introduction of  new  hazards (Littlewood and Strigini, 1992). Nor­
mal accident theory  (NAT) explains that some  system  accidents are  inevitable  because 
complex systems are  highly  interconnected,  highly  interactive,  and  tightly coupled  (Perrow, 
1999). Although NAT is a classic approach  in organizational sociology, it remains theoret­
ical rather than empirical. To our knowledge, only one attempt to operationalize NAT has 
been  made,  not  for computer-based systems but for a  specialized  application to petroleum 
reWnery processing. 

This paper  presents a  new approach to operationalize  NAT  as an engineering-based 
methodology,  with the  goal  of  quantifying system-level  complexities  of  computer-based 
systems.  A  methodology is presented for early complexity identiWcation and quantiWcation 
of system  requirements. This enables an  early  assessment  of NAT complexities that  can 
impact  safety  before  they are  propagated to other  life-cycle  phases. Also, changes  are  gen­
erally  easier and less costly  to implement at the  requirements phase. Armed with an eVec­
tive  complexity  assessment,  one  can compare  options,  target  the  requirements to simplify, 
and measure  simpliWcation eVorts. 



aT ble 1 
    A summary of the research hypotheses and associated rejection criteria 

  Null hypothesis H0	  Rejection criteria 

       (1) There is no correlation between NAT metrics and system predictability	  Structure correlation 7 .250 
       (2) There is no correlation between NAT metrics and system observability	  Standard error 6 .100 
       (3) There is no correlation between NAT metrics and system usability	   95% ConWdence interval 

does not cross zero 
     (4) Increasing complexity does not decrease system predictability	   Wilcoxon sign-ranks test 
     (5) Increasing complexity does not decrease system observability	 
     (6) Increasing complexity does not decrease system usability	 

Z 6 ¡1.645 
p-Value 6 .05 

The  speciWc  aims of this research to operationalize  NAT as follows: 

1. Identify a  formal modeling method for system  requirements which will  aVord quantiW­
cation of NAT  attributes. 

2. Identify the  NAT attributes  to be operationalized with respect  to system requirements. 
3. Identify potential metrics for  each NAT attribute to be  operationalized. 
4. Identify the  metrics that are useful measures or indicators of NAT  complexity. 

Several hypotheses  (Table  1) are  formed to help realize  these speciWc aims. 

2. Normal accident theory 

Perrow, an organizational  theorist,  is  the originator of  NAT. His work emerged in 1979 
when  he  was advising  a  Presidential  commission investigating  the  accident at Three  Mile 
Island (TMI Harrisburg,  PA). In essence,  Perrow identiWed system complexity  as the 
primary accident cause; thus, the TMI accident was labeled a normal accident because this 
type of accident is inevitable with complex  technological systems (Perrow,  1999). 

NAT identiWes  two  important system characteristics—interactive  complexity  and tight 
coupling—that  make  complex systems especially  prone  to system  accidents. Interactively 
complex systems have  the  potential  to generate  many branching paths among subsystems. 
These  interactions can be  unexpected, unplanned,  incomprehensible,  and even  unperceiv­
able  to system  designers or system users. Coupling is a  measure  of the  strength of the  inter-
connectedness  between  system  components. Tightly  coupled  systems  have  little  or no 
slack; thus, they  rapidly respond to and propagate  perturbations such that  operators do 
not have  the  time  or ability to  determine  what is  wrong. As a result,  human intervention is 
unlikely  or improper. 

2.1. NAT limitations 

NAT is limited in its applicability. First,  it  addresses a  narrow category  of accidents— 
industrial  disasters  of unforeseen events resulting  in great damage  and loss. Thus,  it has  not 
been  extended to more  commonly encountered  accidents of  limited  scope.  Secondly, NAT 
addresses safety  in  the  context of  organizational  structures  for complex,  industrial  systems 
such  as nuclear  power  plans,  oil  reWneries,  and chemical  plants.  Thus,  it  does  not focus on 
the  details of  the  system  and its components.  Thirdly,  the  theory has not been  extended  to 
computerized  systems  using software.  This limitation is  realized  by Perrow:  “The  metaphor 



of  an accident residing  in  the  complexity and  coupling of the  system  itself,  not in the  fail­
ures of its components  has seeped into many areas where I never  thought to apply it”  (Per­
row, 1999, p.  354). Perrow cites software as a neglected or new area to consider. 

NAT  is also limited by  a  lack of reWnement in deWning and quantifying its terms  and 
concepts. “Ill-deWned concepts” and “the absence  of criteria for measuring complexity and 
coupling” have  been cited as signiWcant limitations  (Hopkins, 1999). Quantitative  measures 
of interactive  complexity  and coupling would address these  limitations and could serve  to 
promote  the  theory in new areas. 

2.2. Related  NAT research 

The validity and application of NAT to petroleum reWneries  has been researched (Wolf, 
2000). A reWnery system  was modeled as  a  hierarchy of  system  units, links, and nodes. 
Links are  the  system  pipes that  carry raw material,  byproducts,  Wnal  product,  and wastes. 
Nodes are  points of connection and interconnection between  unit processes and links. 
They  are  also the  points for control and monitoring  of parameters such as Xow,  pressure, 
and temperature.  Using  this system  model,  a  “reWnery-speciWc”  index of complexity was 
created based on reWnery  process knowledge  and the  number of  unit  processes,  links, and 
nodes. This index,  Ciplant,  served  to quantify and estimate  the  interactive  complexity  for a 
reWnery. Ciplant represented the  maximum number of states the system could exist. 

Wolf’s  conclusions support the  validity of  NAT. ReWneries  characterized  by high  com­
plexity and tight  coupling had more  occurrences  of accidental releases of hazardous mate­
rials and more  Wres and explosions. However, two limitations are  evident in this research. 
First,  the  index of complexity Ciplant is  speciWc to  reWneries  and is not generalized to other 
applications. Second,  NAT  was  validated  for a  narrow spectrum  of accidents:  reWnery 
disasters involving untoward releases  of hazardous material,  Wres, and explosions. There­
fore, NAT was not expanded to other types of accidents besides disasters. 

Coskun and Grabowski (2001)  addressed the  challenge  of measuring  complexity by 
using  an integrated metrics approach. This  approach  used an  interdisciplinary  complexity 
model  encompassing six  domains. This interdisciplinary complexity model was used  to 
measure  the  complexity of software. Software  complexity  is important to address but soft­
ware  metrics  alone  are  not suYcient  to  address  safety because  safety  is  an  emergent  prop­
erty of  the  system. 

3. Operationalizing NAT 

Operationalizing NAT  transfers the  theory to practice  by  establishing concrete, quanti-
Wable  measures of system  complexity. The  operationalization process involves  establishing 
a conceptualized system  model,  identifying  which  NAT  attributes  to measure,  and deWning 
multiple metrics to measure or indicate the NAT attributes. 

3.1. System  model 

The  Wrst challenge  is  to formally  model  the  speciWed behavior (requirements)  of a 
system. System  requirements deWne  what the system shall do, deWning system  behavior by 
specifying system  inputs (stimuli), system outputs (responses), and the behavioral relation­
ships between the  inputs and outputs. The  model  needs to provide  an abstraction to 



The Software Cost Reduction (SCR) method was used for specifying and modeling a 
system model. SCR is based on the Parnas Four-Variable Model. This model is 
essentially  a black box view of system inputs, outputs, and external behavior; thus, the 
model captures the required external behavior, devoid of implementation or structural 
design aspects. SCR is based on a finite state machine model of the system where the 
system  ∑ is a 4-tuple, ∑ = (Em, S, s0, T), where Em = set of input events, S = set of system 
states, s0 = set of initial states with s0  f S, and T = the system transform (Heitmeyer et al. 
1998). 

Additionally,  an integrated environment called  the  SCR toolset  was developed for for­
mally  specifying, modeling, simulating,  and analyzing complex systems.  The  toolset 
includes  a Dependency Graph Browser that  displays dependencies between SCR model 
variables as  a  directed  graph  (Fig. 1).

    Fig. 1. An SCR dependency graph. Source: Naval Research Laboratories. 

 The  dependency  graph also provides a  mapping  of 
controlled  variables  (outputs)  to monitored variables (inputs). Each variable  is depicted as 
a node; an arrow represents a  dependency between nodes where  value  of the  variable  at the 
tail  depends on the  value  of the  variable  at the  head. Another tool  is available  for  creating 
a user  interface  for the  system  model. The  user interface  can provide  transparent  control  of 
system simulations. 

3.2. NAT attributes 

NAT identiWes  13  attributes of  complex systems  and  categorizes them  as either interac­
tively  complex  or tightly  coupled. Our research  established  a  more  abstract  categorization 
of external  and internal  complexity as  part  of  our inductive  process  to identify  the  NAT 
attributes to operationalize. 

External  complexity  was  characterized with three  variables: system  predictability, 
observability, and usability. These  variables  were  viewed  in the  context of  an operator 
interacting  with the  system.  Situations of poor system  predictability,  observability,  and 



usability can contribute  to human error or worse,  mishaps. For instance,  predictability 
concerns unfamiliar, unplanned,  or unexpected system  behaviors as viewed system’s opera­
tor. These  behaviors  can result  in unplanned machine  movements or unexpected machine 
startups. A speciWc  example  concerns unpredictable  mining machine  movements that 
occurred in the  US and Australia that  in some  cases  resulted in  injury or even fatalities 
(Sammarco,  2003). Complex  system  behaviors can also be  transparent making them  diY­
cult to observe  or comprehend by  the  end-user  (Perrow,  1999). Observability  also declines 
if  the  end-user  is overwhelmed with information as happened to  operators during the 
Three Mile Island mishap. Poor predictability and observability can negatively impact sys­
tem  usability. Hence, system  complexity  can be  indicated by  an external  component char­
acterized with three  variables:  system  predictability,  observability, and usability.  These 
were the dependent variables for our research. 

Internal  complexity  concerns a  system’s internal  structure. Internal  complexity  was 
characterized by modeling  system  requirements with SCR, and quantifying  NAT  attri­
butes  represented in a  SCR dependency graph with graph-theoretical  metrics—the  inde­
pendent variables. SpeciWc  NAT  attributes  to operationalize  were  identiWed  by deduction: 
(1) abstracting NAT  attributes  of complexity to a  generalized view  of simple (linear)  and 
complex (nonlinear) systems;  (2) selecting a subset  of NAT  attributes  pertaining  to  linear 
and nonlinear systems;  (3)  identifying a  general  set  of metrics to measure  or indicate  the 
subset of NAT attributes. 

3.3. System  linearity 

Simple  systems  are  linear. A  single  line  of  dominos provides an example. A single  distur­
bance  of a  domino starts a  linear chain of events where  one  domino pushes over  the  next. 
This chain  of events follows a  highly  observable,  predictable,  and linear  sequence  of events. 

Nonlinear systems are  complex.  They have  multiple  branching paths to  system  compo­
nents and subsystems;  hence,  nonlinear systems are  highly  interconnected. A  car wind­
shield provides a nonlinear  system  example.  A  single  disturbance,  such as a  stone  hitting 
the  windshield,  results in multitudes  of  nonlinear, interconnected  cracks. The  extent and 
pattern of the crack  is unpredictable and incomprehensible. 

A high-level abstraction of system  linearity was used  to select  a  subset  of three  attributes 
pertaining to linearity from  the  13  NAT  attributes. The  resulting NAT  attributes  were 
interconnectivity, common-mode  connections,  and multiple  control parameters. A  set  of 
15 metrics were proposed to operationalize  these NAT attributes. 

    Fig. 2. A simple linear system having one path. 

3.4. Metrics 

Graph-theoretical  metrics  were used  to measure system  linearity of  SCR  dependency graphs. 
For instance, interconnectivity was indicated  by  using  McCabe’s cyclomatic  complex­
ity V(g)—the  number of linearly  independent  paths. The  directed  graph  of  Fig. 2  depicts 



a simple system where V(g) D 1; thus, the single path from  v1 to v4 indicates  very 
low  interconnectivity.  A  nonlinear system  is  depicted  by  Fig. 3,  where V(g) D 5; 
thus, the Wve  linearly independent  paths from  v1 to  v4  indicate  more system  interconnec­
tivity. 

     Fig. 3. A nonlinear system having Wve paths. 

Common-mode  connections increase  as a  system  becomes more  nonlinear. For instance, 
vertices  v2,  v3,  and  v4 of Fig. 3  have  a  common-mode  connection established by vertex  v1. 
Vertex  v2 is  another common-mode  connecting v2 to v3,  v4,  and to  itself  via  a self loop at 
v2. The  out-degree  metric  quantiWes  a  common-mode  connection. The  out-degrees of  verti­
ces  v1  and v3  are  od(v1) D 3 and od(v2) D 3. By comparison,  od(v1) D 1 and od(v2) D 1 for 
the  simple linear system of Fig. 2. 

Multiple  control  parameters are  used to determine  the  paths of control  in a  graph. The 
number of control parameters increases as  a  system  becomes more  nonlinear. For instance, 
the  number of edges  into a vertex  (in-degree)  is  indicative  of the  quantity of control param­
eters for that vertex. The in-degree of vertex  v4 (Fig. 3) is three in comparison to a value of 
one for vertex  v4 (Fig. 2). 

This section has presented just a  few  of the  metrics for the  NAT  attributes  of intercon­
nectivity,  common-mode  connections, and multiple,  interacting control  parameters. Ulti­
mately,  a set of  15 metrics  {X1 ,X2,X3, ƒ , X15} were  identiWed  as candidates to 
operationalize  NAT. This set  of metrics was based on three  system  abstractions and pro­
jections (perspectives). The  rationale  was that  a  single  abstraction or projection could not 
aVord all the  necessary  metrics  because  complexity  is multidimensional.  These  abstractions 
were created from SCR dependency graphs, as follows: 

•	 Scenario subgraph; a  course-grained abstraction induced  by the  dependency graph 
edges and vertexes that are used for a given set of user tasks. 

•	 Critical-state  subgraph;  a  medium-grained abstraction derived from  the  scenario sub-
graph. 

•	 Critical-vertex  subgraph; a  Wne-grained abstraction for each  vertex of the  critical-state 
subgraph. 

These projections were created for the three subgraph abstractions: 

•	 Input projection; a  view of all dependencies with respect  to the  input vertices (i.e., all  the 
ancestors of a given input vertex). 

•	 Output projection; a view of all  dependencies with  respect  to the output vertices (i.e.,  all 
the  descendents of a given output vertex). 

•	 All projection; a view of all dependencies with respect to input and output vertices. 



4. Methodology 

4.1. Research procedures 

Dependent variable data were  obtained from subject perceptions of a PC-based simula­
tion of  a  light control  system  (LCS). The  experiment consisted of  two major parts. First, 
subjects learned the  operation of the  LCS. Next,  subjects followed written instructions  to 
run three  test scenarios on a PC-based LCS simulator; each scenario was a  set  of typical 
user  tasks. After each  scenario was completed, subjects  answered a questionnaire  concern­
ing subject  perceptions of  the  LCS,  took a short break,  and  then began the  next test  sce­
nario. 

The  questionnaire  was used  to quantify  the  dependent variables. It  was based  on two 
respected  and validated instruments:  the  questionnaire  for user  interaction  satisfaction 
(Human Computer Interaction Laboratory, 2004) and the  software usability measurement 
inventory (Human Factors Research  Group,  2004).  Closed and open-ended questions were 
used, with a  Wve-level Likert scale  from  1  (lowest)  to 5 (highest) for the  closed-ended ques­
tions. A portion of the questionnaire is given in Appendix. 

4.2. Research design 

The  design was based  on a cross-over  design—a standard design with  an established 
validity. The  research also used a standard usability evaluation method called the discount 
usability engineering method. 

The  cross-over  design used two treatments (A  and B)  and two washout periods (breaks). 
The  independent  variables  were  manipulated  to increase  NAT  complexity for treatment A; 
treatment  B  had the  independent variables  manipulated  to decrease  complexity. A  washout 
or waiting period was established between treatments to minimize  carryover  or residual 
learning eVects from  the  prior treatments. The  washout  periods were  just  a  few  minutes 
because  the  residual  eVects were  not  physiological. Also, short  washout  periods were 
needed  to keep  the  total  test  time  relatively  short.  Lengthy  washout periods could have 
confounded data because of subject fatigue or boredom. 

The basic sequence  was to give half the subjects treatment A, let the subjects rest during 
the  washout period,  and then  have  subjects  receive  treatment  B. The  other half of the  sub­
jects had the  same  treatments,  but the  order  was  reversed. Thus,  given these  sequences, the 
cross-over  design had signiWcant advantages: the  subjects served as their own control,  there 
was  greater sample  size  eYciency  with randomization of treatment order,  and all subjects 
received all the treatments. 

Treatments A  and B  were  both applied to each of the  three  scenarios. The  sequence  of 
scenarios and treatments were  optimized for a  cross-over  design (Jones  and Kenward, 
1998).  Tables  2  and 3  list the  test sequences. Half  the  subjects were  randomly assigned to 
sequence  1  and the  other half to sequence  2. 

The  discount usability  engineering method was used to evaluate  system  usability, which 
was  a dependent variable. The method uses three techniques: scenarios, simpliWed thinking 
aloud technique, and heuristic  evaluation. The  simpliWed thinking aloud technique  encour­
ages  the  subjects  to vocalize  their  thoughts as  they perform  typical  tasks. Observers 



recorded these  thoughts and encouraged the  users to vocalize  their thoughts and provide 
user feedback. 

   

 

Table 2 
Sequence 1 ordering of scenarios and treatments 

Order Scenario Treatment 

0 a 
1 b 
2 1 A 
3 b 
4 2 B 
5 b 
6 3 A 
7 b 
8 2 A 
9 b 
10 1 B 
11 b 
12 3 B 

a—Warm-up session. 
b—Washout period. 

   

 

Table 3 
Sequence 2 ordering of scenarios and treatments 

Order Scenario Treatment 

0 a 
1 b 
2 3 B 
3 b 
4 1 B 
5 b 
6 2 A 
7 b 
8 3 A 
9 b 
10 2 B 
11 b 
12 1 A 

a—Warm-up session. 
b—Washout period. 

4.3. Research  vehicle 

The  light control  system  (LCS) was  used as the  research test vehicle. The  LCS require­
ments were  formalized as a  case  study by the  Fraunhofer  Institute  for Experimental  Soft­
ware  Engineering for requirements engineering seminars  (Queins  et al.,  2000). The LCS 
oVered several  advantages  for research. First,  “the light control  case study  is an  example  of 
a nontrivial  reactive  system” (Kronenburg and Peper,  2000). It represented a relatively 
complex, real-world system  in that  it  required sensors,  actuators, software,  human  machine 



interfaces, automatic  control  functions,  manual override  functions, and fault management 
functions for the  detection, annunciation,  and tolerance  of  faults. Lastly,  it aVorded 
human/computer interaction. 

The LCS  was  to  control  the  interior  lighting  of  a  building consisting  of  various  oYces, 
laboratories, hallways, and staircases such that energy was not wasted and such that a safe 
environment  was maintained  for  normal  and abnormal  conditions.  An oYce environment is 
relatively benign  with  respect  to safety.  Loss  of  lighting can  result in  trip  and  fall hazards. 
More dangerous hazards would exist if the LCS  was  used in  an industrial environment such 
as underground mining where moving equipments, rotating  machinery, high-voltage electri­
cal circuits, and  unstable roof  conditions  are common.  Several LCS  requirements speciW­

cally address  fault tolerance and safety aspects  applicable to  safety-related  applications. 
BrieXy,  the  LCS provides automatic  and manual control for two groups of oYce  lights: 

one  group is near the  window and the  other is near the  wall. The  control enables the  user  to 
set two light scenes named occupied  and vacant. The  occupied  light  scene  automatically 
maintains  a user-deWned lighting intensity  and light  group conWguration when  the  oYce  is 
occupied. The  oYce  lights are  also dynamically controlled to provide  a  constant level  of 
illumination in  spite  of variations in sunlight entering the  oYce.  The  vacant  light  scene 
automatically provides  a  user-deWned light intensity  and conWguration if  the  oYce  is 
vacated for an  extended time  that the  user  deWnes.  Lastly,  the LCS provides  manual light­
ing control  to  over-ride the  automatic controls. Manual pushbutton switches enable  on/oV 
control of each light group. 

The  LCS components consist of sensors,  a  logic  solver,  wall  and window light actuators, 
and a user-interface  panel. Five  sensors are  used; a motion sensor detects an occupied  or 
vacant oYce;  an  analog sensor measures  natural  light in the  oYce; a door closed contact 
indicates the door is open or closed; two status-line  sensors indicate if the lights are turned 
on or oV. The  logic  solver  is  PC-based and it  provides control  functions and a user-inter­
face. Manual pushbutton switches  enable  manual control of each light. 

The  LCS system-level requirements were  modeled using the  SCR toolset. These require­
ments deWned end-user  needs,  nonfunctional  needs,  and the  required behavior of the  sys­
tem hardware components that included Wve sensors, two actuators, two pushbuttons, and 
two graphical user  interfaces (GUIs). A model  of nonideal LCS behavior (Heitmeyer  and 
Bharadwaj,  2000)  was expanded to provide  new  functionality  needed by the  research. A 
new PC-based GUI for the  LCS was also created. The control  requirements for oYces  and 
laboratory  spaces  were identical; therefore, the  problem  space  was  scoped to a model for a 
single oYce  for the research described by this paper. 

4.4. Subjects 

Thirty-two subjects  from  the  National Institute  for Occupational  Safety and Health 
participated  in testing.  All  subjects were  recruited as  volunteers by word of mouth. Thirty-
two subjects participated in  the  LCS tests and are  characterized as  follows based  upon sub­
ject data collected during pre-test activities: 

• 78.1%—technical job classiWcation; 
• 71.8%—45–65 years  old; 
• 87.3%—male; 
• 100%—no prior involvement in the research; 



• 84.4%—no knowledge of the  light control system test vehicle; 
• 84.4%—PC  experience rated  at 4  or 5 (expert). 

4.5. Observers 

Three  additional volunteers were  test observers that administered the  tests. The  observ­
ers did not know the  purpose  of  the  research nor understand the  operation of the  LCS. 
This was intentional so as to reduce the potential for observer-induced biases. 

The  observers  gave  the  subjects instructional material  for the  using  the  LCS and GUI. 
Multiple  delivery methods were  used  for instruction to accommodate  subjects  who learn 
by reading, watching,  listening, or by  hands-on activities. First, subjects watched  a  narrated 
PowerPoint presentation giving an overview  of LCS. The  presentation contained a video 
that provided a dynamic  example  of using the  LCS  and GUI. Next,  written instructions 
were given. Lastly,  the  observers instructed  subjects to run a  warm-up session to gain 
hands-on experience. 

Observers  also collected  the  subject  questionnaires  and qualitative  data  in the  form  of 
observer notes. During  the  testing,  observers took notes  on each  subject’s verbal  com­
ments, actions, and body language  with respect  to predictability,  observability,  and usabil­
ity.  The  qualitative  data  of observer notes  were  quantiWed  by using a process of 
categorizing the data  to the  dependent variables and mapping the data  to a Wve-point Lik­
ert scale.  Once  the  observer  data were  quantiWed, the  mean  values for each  category were 
weighted  by  30%,  and then  combined with  questionnaire  data for predictability,  observ­
ability,  and usability. 

5.  Results and  discussion 

5.1. Subject responses 

The  frequency of  subject responses  for each scenario  and treatment were  depicted by 
histograms. In general,  the  treatment  B  histograms  for  predictability,  observability, and 
usability  are  skewed  to the right  (the  highest level  5)  more  than  the histograms for treat­
ment A. This indicates that treatment B (less complex)  was generally perceived as having 
better predictability, observability, and usability than treatment A. 

Table 4  lists  the  median and mode  subject  responses  for  predictability, observability, 
and usability for  treatments A  and B.  

 
      

   

 
 

Table 4 
Mean and mode of each dependent variable and treatment for all scenarios 

Scenario 1 
treatments 

Scenario 2 
treatments 

Scenario 3 
treatments 

A B A B A B 

Predictability median 2.42 4.38 2.5 4.67 2.64 4.95 
Predictability mode 3.0 5.0 2.5 5.0 4.67 5.0 
Observability median 3.79 4.38 3.99 4.6 4.14 5.0 
Observability mode 3.86 4.0 5.0 5.0 4.71 5.0 
Usability median 3.75 4.67 4.0 4.5 4.04 4.25 
Usability mode 4.25 5.0 4.0 5.0 4.5 5.0 

Observations of  these  data  also indicate  that 



treatment  B  was more  predictable, observable,  and usable  because  the  median and mode 
values  for  treatment  B  are  all  greater  than for treatment  A with  only one  exception—the 
mode values are  equal for observability of scenario 2. 

5.2. Internal validity analyses 

All subjects answered all questions of  the questionnaire each  time they completed a sce­
nario. The questionnaire  data had numerous internal  validity checks to identify confound­
ing, or invalid data,  to  assess data reliability,  and to evaluate  subject  learning and fatigue 
eVects. 

Each  potential threat is listed and discussed as follows: 

•	 Data confounding  from  the  scenario instructions. Subject  responses  for the  dependent 
variables  predictability, observability,  and  usability could be  biased due  to subjects 
having  diYculty  following  and understanding scenario instructions. This seems 
unlikely  based on  the  warm-up data  for variable  W1—the  mean value  for the  subject’s 
ease  of  following  and understanding the  warm-up instructions. Of  28  subjects,  24 
rated W1 very favorably with a greater than 3.94  out of a maximum of 5.0. The distri­
bution for  W1 had a  positive  skew  to  the  right (the  highest  score)  as depicted  by 
Fig. 4. 

•	 Data confounding from  the graphical  user  interface (GUI).  Biased  responses  for  the 
dependent variables  predictability,  observability, and  usability could be due to subjects 
having  diYculty with  the GUI.  This  seems  unlikely  based  on  the warm-up  data for  var­
iable  W2—the  mean value  for  the  subject’s ease  of using the  GUI  to run the  warm-up. 
Of  28 subjects,  24 rated W2 greater  than  3.58 out  of a maximum of  5.0  score.  The dis­
tribution  for W2 had  a  positive skew to  the right  (the highest score) as  depicted  by 
Fig. 4. 

•	 Invalid data. All  subjects answered  all questions of the  questionnaire;  however, data 
from  four subjects were  eliminated  because  of consistent strings  of high ratings and 
because  these  data  were  inconsistent with observer data. For instance,  out of 36 ques­
tions, 34  were  rated  5.0 (highest  rating)  and two questions were  rated 4.0.  This con­
trasted with the  observer’s data which indicated much lower ratings. 

       
      

Fig. 4. Mean subject responses for the warm-up session. Graph (A) depicts the ease of following and understand­
ing the warm-up instructions. Graph (B) depicts the GUIs ease of use. 



•	 Data  reliability. The  data reliability was accepted given Cronbach’s r D .811. An r of .70 
or  higher  is  a typical benchmark of acceptability. 

•	 Learning eVects or subject fatigue. From  inspection  of data  trends,  one  can infer  learning 
eVects and fatigue.  A  positive-sloped trend could be  an indication that subjects are 
learning  more  as time  progresses; thus, they  would rate  dependent variables  with a 
higher value. A negative-sloped trend could be an indication of subject fatiguing as time 
increases, so they  would rate  dependent variables  with a lower value.  The  data trends for 
the  sequences  1  and 2 test orders were  used to infer  data  confounding from  learning 
eVects or fatigue. Fig. 5  depicts the  data trends for sequence  1.  Data confounding  was 
not detected in either graph of sequence 1 or 2 data trends. 

       Fig. 5. The mean values of each dependent variable for the sequence 1 test order. N D 14 subjects. 

5.3. Hypotheses  testing 

Hypotheses 1–3 concern the  existence  of correlations between subject perceptions of the 
system  (the  dependent variables  of predictability,  observability,  and usability)  and the  set 
of 15  NAT  metrics of system  complexity (the  independent variables). Testing of  hypotheses 
1–3 used canonical correlation analysis (CCA) and structure correlations. 

CCA is  a multivariate  analysis technique  used  to identify  multiple  correlations between 
sets of independent and dependent variables. CCA produces a set  of paired canonical vari­
ates  representing  the  independent and dependent variables  so as to maximize  the  correla­
tion. The  canonical variates consist of  weighted sets of the  original  variables. The 
weightings are called canonical coeYcients. 

These  raw canonical  coeYcients  can  be  diYcult  to interpret,  but structure  correlations 
are  very  useful  to facilitate their interpretations (CliV, 1987; Shafto et al.,  1997). Structure 
correlations are derived from the raw canonical  coeYcients  and represent the  Pearson cor­
relation of each original  variable to the  canonical  variate. 

The  results showed structure  correlations exceeding  .25  for Wve  metrics.  The  Wve NAT 
metrics that  correlated with the  dependent variables  are  listed in  Table 5.  The structure 
correlations for the  Wrst pair of canonical variates are depicted  in Fig. 6. 



      

 

      
 

 

Table 5 
The NAT attribute metrics and their associated abstractions and projections 

NAT attribute Metric Abstraction Projection 

Interconnectivity 
Common-mode connections 
Control parameters 
Interconnectivity 
Control parameters 

X13—cyclomatic complexity 
X7—out-degree 
X5—number of state changes for a given input 
X2—cyclomatic complexity 
X6—in-degree 

Critical vertex 
Critical state 
Critical state 
Scenario 
Critical state 

All 
Output 
All 
Output 
Input 

        
  

Fig. 6. A graphical depiction of structure correlations for the Wrst pair of canonical variates. Note the negative 
correlation between the canonical variates. 

The  bootstrap re-sampling  method (Efron and Tibshirani, 1993) was used to obtain the 
estimates of standard error and the 95%  conWdence limit  for the structure correlations.  The 
bootstrap method takes repeated  samples  to approximate  the  distribution of the  original 
population. The  re-sampling was done  preserving the  treatment group sample  sizes. The 
results of 1000  bootstrap  samples  were  standard errors  of less than  .10,  and a  statistically 
signiWcant 95%  conWdence  interval as listed in  Table  6. 

 
       

Table 6 
Structure correlations and statistical signiWcance measures for the Wrst pair of canonical variates 

Independent 
variables 

Structure 
correlation 

Standard 
error 

ConWdence limits 

5% 95% 

X13 
X7 
X5 
X2 
X6 

0.542 
0.316 
0.315 
0.294 
0.272 

0.07596 
0.08953 
0.08834 
0.08835 
0.09122 

0.420 
0.175 
0.174 
0.148 
0.127 

0.665 
0.463 
0.461 
0.438 
0.421 

A Wilcoxon signed-ranks test  was used to test null  hypotheses 4–6—increasing  NAT 
complexity does not decrease  system  predictability,  observability,  and usability. The  results 
(Table  7) showed that subjects perceived  the  test scenario outcomes of the complex  system 
(treatment A) as  less predictable,  observable,  and usable  in comparison to the  simpler 
system (treatment  B).  The  statistical  signiWcance measure was determined by using 1-tailed 
p-values. 



   

 
 

    

Table 7 
Wilcoxon signed-ranks test results for treatments A and B 

Wilcoxon signed-ranks Predictability Observability Usability 
test (1-tailed) (treatments B–A) (treatments B–A) (treatments B–A) 

Z 
p-Value 

¡7.230a 

.000¤ 
¡6.014a 

.000¤ 
¡5.574a 

.000¤ 

¤ Statistical signiWcance <.001 (1-tailed). 
a Based on negative ranks. 

5.4. Discussion 

Test  results for hypotheses 1–3, as depicted by  Fig. 6,  show negative structure  correla­
tions for the  canonical  variate  composed  of the  original  dependent  variables  (note  that  a 
perfect  negative  correlation is ¡1). Therefore,  as the  independent variables  X13, X7,  X5, 
X2,  and X6 increase,  the  dependent variables  of  predictability, observability, and usability 
decrease. 

The statistical  test results  (Table 7) for  hypotheses  4–6  indicate that  treatment  A 
was perceived  by  subjects as  more complex  than  treatment  B.  These results were statis­
tically  signiWcant given that the   p-values  exceeded  the  statistical  signiWcance level of 
0.05. 

In  summary,  the  null  hypotheses 1–6  were  all  rejected given the statistical  signiWcance  of 
test results and the steps taken to guard internal validity. 

5.5. Implications 

A  methodology  for the  quantiWcation of NAT  complexities for system-level require­
ments was presented. Early  quantiWcation  of  NAT complexities  impacting safety could 
help  system  designers identify,  analyze,  and  mitigate safety-related system  complexities 
before  they are  propagated to  subsequent life-cycle  phases. Safety is an emergent property 
of the system,  so safety must be addressed at the system level as done  by this research. This 
is in contrast a  safety  approach  that quantiWes attributes of the  software  subsystem.  This 
does not  address the  system  directly  and also would take  place  much later in the  system  life 
cycle when the software is  already  written.  Thus,  system modiWcations would be  more  diY­
cult and  costly to  correct. 

6. Conclusions 

This work is  a  promising  and signiWcant step in meeting the  research objective: to oper­
ationalize NAT for the system-level requirements of  safety-related  computer systems. 

The  research  objective  was  partially  realized.  This  claim is  qualiWed as partial 
because the  research was limited to one  system  and 32 test  subjects; more  empirical 
research  is needed  to establish external  validity.  Two arguments support this qualiWed 
claim. First,  there was a  statistically  signiWcant, negative  correlation between Wve  NAT 
metrics of  complexity and the  externally  visible  system  attributes  of predictability, 



observability,  and usability. Secondly,  each of the  speciWc  aims  for operationalizing NAT 
was  realized. 

•	 SpeciWc aim 1. Identify a  formal  modeling  method for system  requirements which will 
aVord quantiWcation of NAT  attributes. 
The  SCR models and simulations successfully  served the  research needs for modeling, 
simulating, and analyzing human-computer  interactions in the  context of  NAT. The 
SCR dependency graphs accommodated multiple  levels of  system  abstraction and the 
multiple  projections needed for speciWc  aim  3.  Secondly,  the  SCR toolset successfully 
supported simulation  of our  model. Subjects were  able  to quickly  learn (in  about 
10 min) to run the  simulation and eVectively  understand the  simulation such  that  useful 
data  were  collected. 

•	 SpeciWc aim  2. Identify  the  NAT  attributes  to be  operationalized with respect  to system 
requirements. 
A process of deduction enabled us to ascertain that three  of 13 NAT  attributes  can  be 
observed in SCR  dependency models of system  requirements. Our premise  was  that 
NAT  attributes  could be  generalized  to linearity. Complex  systems  are  nonlinear; simple 
systems  are  linear. From  this  premise,  our reasoning  led us to identify three  NAT  attri­
butes  to operationalize: interconnectivity,  common-mode  connections, and multiple 
control  parameters. 

•	 SpeciWc aim  3. Identify potential metrics  for each NAT attribute to be operationalized. 
This  aim  was  satisWed as evidenced by 15  metrics proposed to measure  or indicate  the 
three  NAT attributes from  speciWc  aim  2. We  infer a degree  of  validity  to the  proposed 
metrics because  our selection process addressed the  multidimensional  aspects of com­
plexity by using multiple system abstractions and perspectives to obtain our metrics. 

•	 SpeciWc aim  4. Identify the  metrics  that are  useful measures of NAT  complexity. Analy­
sis results showed  that  Wve  out  of  the  15 proposed  metrics  had structure  correlations 
exceeding  .25,  standard errors of less  than  .10,  and statistically  signiWcant conWdence 
intervals. 

6.1. Limitations 

Limitations of this research are as follows: 

•	 Predictive  limitations. The  research  did not develop mathematical  models and inference 
procedures  to identify and assign a  probability  to future  outcomes;  one  thus cannot 
make  outcome  predictions based solely on the metric values. 

•	 Limited  subject diversity. The  data  from  our volunteer  subject  characterizations indi­
cates a relatively  homogenous group of  people.  This  can potentially threaten  external 
validity  with respect  to  generalizations to other populations. We  infer that  it was 
more diYcult  to  elicit  negative subject perceptions  of system  predictability,  observ­
ability,  and usability (the  dependent variables) because  the  typical subject  was 
an engineer  with considerable  analytical  abilities  and experiences  with  technical sys­
tems. 

•	 Unknown external  validity. The resulting  set  of independent variables X13,  X7,  X5,  X2, 
and X6 and the  rejection of the  null hypotheses were  based  on statistically  signiWcant 
test results  speciWc  to  the  data set.  It is not known if  these  independent  variables  are 



useful  for other  systems,  or if the  same  inferences concerning the  six  research hypotheses 
pertain to other  systems. 

Appendix 

This appendix contains a  portion of the  subject questionnaire.  The  questions are  for sce­
nario 1,  treatment B. All scenarios and treatments had identical questions. 

System predictability 
3.1 What is your initial  opinion of the system’s behavior? 

3.1.1	 confusing understandable
 
1 2 3 4 5
 

3.1.2	 unpredictable predictable
 
1 2 3 4 5
 

3.1.3	 unstable stable
 
1 2 3 4 5
 

3.2	 How diYcult  is anticipating  the system’s output or behavior? 
diYcult easy 
1 2 3 4 5 

System observability 
3.3 Does the system keep you informed about its status or state? 

3.3.1	 never always
 
1 2 3 4 5
 

3.3.2	 inappropriately appropriately
 
1 2 3 4 5
 

3.4	 Recognizing a change in the  system’s  status is 
diYcult easy 
1 2 3 4 5 

3.5	 Understanding the meaning or implications of a change in system’s status is 
diYcult easy 
1 2 3 4 5 

3.6	 Recognizing changes in the display information is 
diYcult easy 
1 2 3 4 5 

System usability 
3.7	 The  ability to Wnd information is 

diYcult easy 
1 2 3 4 5 

3.8	 Can the scenario be  performed  in a straight-forward manner? 
never always 
1 2 3 4 5 

3.9	 Rate the scenario’s complexity. 
high low 
1 2 3 4 5 

3.10 Please write any comments. You may use the back of this page. 



References 

CliV, N.,  1987. Analyzing  Multivariate  Data.  Harcourt  Brace  Jovanovich, San Diego, CA. 
Coskun, E., Grabowski,  M., 2001.  An interdisciplinary  model  of complexity  in embedded intelligent real-time  sys­

tems. I nformation  and S oftware Technology  43,  527–537. 
Efron, G., Tibshirani, R., 1993. An Introduction to the Bootstrap. Chapman and Hall,  New York. 
Heitmeyer,  C., Bharadwaj,  R., 2000.  Applying  the  SCR  requirements method to the  light  control  case  study. 

Requirements  Engineering.  Journal of  Universal Computer  Science  6  (7)  (  special issue). 
Heitmeyer,  C., Kirby,  J.,  Labaw, B.,  Bharadwaj, R., 1998.  SCR*:  A  toolset  for specifying  and  analyzing  software 

requirements.  In: Proceedings  of  the  10th  Annual Conference, Computer-Aided  VeriWcation. 
Hopkins,  A.,  1999.  The limits  of  normal accident  theory.  Safety  Science 32,  93–102. 
Human  Computer Interaction Laboratory. QUIS Webpage  (http://www.cs.umd.edu/hcil/quis/) viewed: 22  April 

2004. 
Human  Factors Research Group. SUMI Webpage  (http://www.ucc.ie/hfrg/questionnaires/sumi/)  viewed: 22  April 

2004. 
Jones, B., Kenward, M.G., 1998. Design and Analysis of  Cross-Over Trials. Chapman and Hall,  New York. 
Kronenburg,  M.,  Peper, C., 2000. Application of  the  FOREST  approach to the  Light  Control  Case  Study.  Journal 

of Universal Computer  Science  (Special Issue on Requirements Engineering) 6 (7). 
Leveson,  N.,  2004.  A  new  accident model  for  engineering safer s ystems.  Safety Science 42,  237–270. 
Littlewood, B., Strigini, L., 1992. The risks of software. ScientiWc American(November), 62–67. 
MacKenzie,  D., 1994.  Computer-related accidental death:  an empirical exploration. Science  and Public  Policy  21, 

233–248. 
Neumann, P.G., 1995. Computer  Related Risks. ACM Press. Addison Wesley Publishing Co., New York. 
Perrow, C., 1999. Normal  Accidents: Living  with High-Risk Technologies. Princeton University Press, Princeton. 
Queins,  S.,  Zimmerman,  G.,  Becker,  M.,  Kronengurg,  M.,  Peper,  C.,  Merz,  R.,  Schafer,  J.,  2000.  The light  control 

case  study:  problem description.  Journal  of  Universal  Computer Science  (Special  Issue  on  Requirements 
Engineering) 6  (7). 

Sammarco,  J.J., 2003. Addressing  the  safety of  programmable electronic  mining systems:  lessons learned.  In:  Pro­
ceedings of the  2002 IEEE Industry  Applications Conference, 37th IAS Annual Meeting, Pittsburgh, PA. 

Shafto, M.G., Degani,  A.,  Kirlik, A., 1997. A  canonical  correlation analysis  of  data  on human–automation  inter­
action.  In: Proceedings  of the  41st Annual  Meeting  of  the Human  Factors  and  Ergonomics  Society.  Human 
Factors  and Ergonomics Society, Albuquerque,  NM. 

Wolf, F.G., 2000.  Normal  Accidents and Petroleum  ReWning:  A  Test  of  the  Theory. Doctoral  dissertation, Nova 
Southeastern  University. 


	Operationalizing normal accident theory for safety-related computer systems
	Introduction
	Normal accident theory
	NAT limitations
	Related NAT research

	Operationalizing NAT
	System model
	NAT attributes
	System linearity
	Metrics

	Methodology
	Research procedures
	Research design
	Research vehicle
	Subjects
	Observers

	Results and discussion
	Subject responses
	Internal validity analyses
	Hypotheses testing
	Discussion
	Implications

	Conclusions
	Limitations

	Appendix
	References




