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1 INTRODUCTION  

If diesel engines are present in underground mines, 
the presence of diesel exhaust can interfere with the 
early detection of hazardous combustion in flamma-
ble materials such as coal and conveyor belting. To 
discriminate the hazardous combustion from the die-
sel exhaust, it was decided that a collection of com-
mercial sensors would be tested to determine what 
set of sensors would be most appropriate. These sen-
sors included both fire and environmental sensors. A 
neural network algorithm was chosen as the function 
approximator in the analysis of the sensor data 
mainly because of the many possible independent 
and dependent variables involved. Earlier work in-
cluded neural networks applied to the discrimination 
of coal combustion from water vapor and shot firing 
fumes (Brinn & Bott 1994) and to the discrimination 
of coal, diesel-fuel, conveyor-belting, electrical-
insulation, and metal-cutting products of combustion 
(POC) from each other (Edwards et al. 2000). To de-
termine what commercial sensors were appropriate 
and what neural network algorithm was best to proc-
ess the data from the sensors, a series of seven un-
derground fire experiments was undertaken in the 
Safety Research Coal Mine (SRCM) at the National 
Institute for Occupational Safety and Health 
(NIOSH), Pittsburgh Research Laboratory, Pitts-
burgh, PA, USA. 
   

2  EXPERIMENTAL METHODOLOGY 
 
Figure 1 shows a schematic diagram of the under-
ground SRCM experimental entries. In each of four  

 
 
 
experiments, about 14 kg of coal was ignited in a 
61-cm-square steel pan placed on the floor in the 
middle of Room 10. Five electrical strip heaters 
were spaced evenly inside the pan under a layer of 
coal lumps of size less than 5-cm equivalent diame-
ter and of depth sufficient to cover the heaters.  
About a kilogram of coal fines was sprinkled on top 
of the coal to thermally insulate the coal and de-
crease the time to ignition. The larger specific sur-
face area of the coal fines compared to the coal 
lumps also provided more CO during the smoldering 
combustion stage. The coal was heated for about 40 
min with power ranging from 1.3 kW to 2.4 kW in 
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Figure 1. Schematic diagram of a portion of the SRCM. 



10-V increments from 130 V to 170 V every 10 min. 
This rate of heating was selected to generate copious 
quantities of CO during the coal smoldering com-
bustion stage. Usually, intense smoking of the coal 
occurred near 30 min after the start of heating with 
flaming near 40 min. In another three experiments, a 
53-cm-square piece of styrene-butadiene-rubber, 
conveyor belting about 1.1 cm thick was clamped to 
the top of a steel plate. The belting was heated by 
the five strip heaters next to and spaced evenly be-
low the steel plate. A nonflammable insulating board 
was placed under the heaters to level and protect the 
heaters from the damp mine floor. The belt was 
heated for about 40 min with power ranging from 
1.1 kW to 3.3 kW in 20-V increments from 120 V to 
200 V every 10 min. Usually, intense smoking of the 
belt occurred near 30 min after the start of heating 
with flaming after 40 min. In three of the coal and 
all of the conveyor belt experiments, an idling diesel 
locomotive was positioned in the entry, B-Butt. The 
air quantity through B-Butt was about 15 m3/s. For 
the three coal combustion experiments with diesel 
exhaust, the diesel locomotive was located upwind 
of the Room-10 split from B-Butt. In the first coal 
experiment, diesel exhaust was absent. For the three 
belt combustion experiments, the exhaust pipe from 
the locomotive was attached to a 10-cm-ID, 4-m-
long pipe that directed the exhaust into Room 10 and 
downwind toward the fire source. Room 10 had an 
average height and width of 2.0 m and 3.9 m, re-
spectively. Collections of duplicate fire sensors at 
two locations, stations 1 and 2, were placed 18 m 
and 148 m, respectively, downwind from the fire 
source in six of the experiments and shown as S1 
and S2 in figure 1. In the first coal experiment, when 
diesel exhaust was absent, only the data from the 
sensors at station 2 were used in a subsequent neural 
network analysis. The location of station 2 was in F-
Butt, which had an average height and width of 1.9 
m and 4.5 m, respectively. For the experiments con-
ducted, the average air quantity near the fire source 
was 2.66 m3/s and at the end of F-Butt was 4.73 
m3/s. The increase in air quantity downwind of the 
fire source was caused by leakage into F-Butt 
around cloth brattices blocking crosscuts connecting 
F-Butt with parallel airways. 

At each of the two stations, a point CO diffusion-
mode sensor was suspended from the roof with the 
inlet of the sensor 40 cm down from the roof.  Con-
centration of CO was measured by this type of sen-
sor in parts per million (ppm). A point, diesel-
engine-exhaust-gas, MOS sensor was also sus-
pended from the roof with its inlet about the same 
distance down from the roof. It was found that the 
MOS sensor output voltage responded bi modally.  
The voltage increased above its clear-air value when 
oxidizable gases such as CO and organic compounds 
were present. When only diesel exhaust in air was 

present, the MOS sensor voltage decreased below its 
clear-air value. This decrease in voltage was in re-
sponse to the nitrogen oxides in the diesel exhaust 
gas.  In all seven experiments, the onset of smolder-
ing combustion released enough oxidizable gas to 
cause the MOS voltages to increase above their 
clear-air average values. Two other types of MOS 
sensors, designed for hydrogen and carbon monox-
ide detection, were placed at both stations but were 
subsequently found to be inferior to the diesel-
exhaust MOS sensors in discriminating the diesel-
engine and flammable material POC. An optical-
path smoke-sensor assembly consisting of a pair of 
modules was placed approximately diagonally 
across the airway at each station with a path length 
between the modules of about 10 m. These modules 
consisted of an infrared emitter and an infrared col-
lector mounted on two steel posts. The presence of 
infrared absorbing or scattering particles in the path 
of the infrared beam caused the sensor signal to de-
crease. An ionization smoke sensor placed at these 
two stations was also found to be inferior to the 
three sensors described above in discriminating the 
combustion of coal or conveyor belting from diesel 
exhaust. All the sensor data were collected from the 
sensors by a mine monitoring system above ground 
that polled the sensors every two seconds. These 
sensors and the mine monitoring system are more 
completely described in (Edwards et al. 2001). 

 
 
3  DESCRIPTION OF NEURAL-NETWORK 
    CLASSIFICATIONS 
 
A computer package of a collection of neural net-
works named NeuroSolutions, (reference to specific 
products does not imply endorsement by NIOSH), 
from NeuroDimension, Inc., was applied to sets of 
inputs derived from the sensor data. The multilayer, 
perceptron neural network (NN) from this package, 
described in some detail in (Principe et al. 2000), 
was found to yield the best discrimination between 
the diesel exhaust and hazardous combustion. This 
NN was comprised of a set of inputs, hidden layers 
of nodes called process elements (PEs), and an out-
put layer of nodes representing the probabilities of 
the possible events. In order for the NN to discrimi-
nate between two combustion sources, the NN had 
to be trained on data similar to data that would be 
routinely collected from underground mine sensors. 
Two sets of experimental data at station one, one 
coal and the other belt smoldering in the presence of 
diesel-engine POC, were combined into one data file 
of 7,679 temporal samples that was used to train the 
NN. From trial-and-error calculations, it was deter-
mined that two hidden layers in the NN yielded the 
best discrimination with 10 PEs in the first hidden 
layer and 5 PEs in the second hidden layer. Each PE 



used a hyperbolic tangent (tanh) activation function 
that operated on the sum of inputs to the PE. The 
three output PEs used softmax activation functions–
functions that operated on the sum of inputs from 
the second hidden layer and classified outputs by as-
signing probabilities to each output. The output layer 
of the NN was divided into the three classifications–
clear air, diesel exhaust, and a combination of die-
sel-exhaust and hazardous-combustion products. A 
desired value for an output was a value of one for a 
correct classification and zero for each of the two 
other possibilities. A classification of the outputs 
from a sample of the inputs occurred when the soft-
max activation function applied to the NN outputs 
indicated that the probability of one of the outputs 
was greater than each of the probabilities of the two 
other outputs. During training 105 weights were var-
ied by the NN. These weights were coefficients of 
the outputs from the PEs and were initialized ran-
domly in a range that depended on the structure of 
the neural network. The weights were then varied to 
make the mean sum of the squares of the differences 
between desired outputs (zero or one) and predicted 
outputs, named the mean square error (MSE), ap-
proach a small value. Acceptable training, also de-
termined by trial-and-error, occurred after as few as 
100 epochs or iterations through the entire training 
file. The exemplar (sample) weight changes were 
averaged over each epoch and the average weight 
changes were applied only after completion of the 
epoch. Changing the weights after each exemplar 
did not improve the classifications. The weight 
changes were calculated using a gradient descent 
method in the backpropagation-of-error part of the 
NN algorithm. A numerical term called momentum, 
having a default coefficient of 0.7, was added to the 
backpropagation expression for calculating each 
weight change. The momentum term used the value 
of the weight from the previous iteration to some-
times accelerate the convergence of the MSE. No 
compelling advantage was found for using other 
than the value of the default momentum coefficient. 
 
 
4  APPLICATION OF THE NEURAL NETWORK 
    TO DISCRIMINATIONS 
 
Criteria were established to determine boundaries 
between the clear air, the diesel exhaust, and the 
combined diesel exhaust and hazardous combustion 
data. Because the MOS voltage responded differ-
ently to diesel exhaust gas than to hazardous com-
bustion gas with relatively little noise in its value, it 
was selected to separate the three periods.  The mean 
and standard deviations of the output voltages from 
the MOS sensors were calculated for each of the pe-
riods of clear air at the sensors. When 10 standard 
deviations decreased from the mean of the MOS-

sensor voltage for more than two time-sampling in-
crements, it was decided that the diesel exhaust had 
reached all the sensors at the station with the MOS 
sensor. If the noise superimposed on a constant sig-
nal is normally distributed, 10 standard deviations 
from the noise mean occurring within two consecu-
tive samples of the signal would indicate almost cer-
tain confidence that the signal was being changed by 
something other than noise. 

 To determine the accuracy and responsiveness 
of the NN, the time interval between the time of ar-
rival of hazardous POC at a station and the time the 
NN detected the hazardous POC was approximated. 
Since electrical heating of the flammable solids 
(coal or belting) occurred soon after the diesel loco-
motive was in position, the MOS sensors were af-
fected by the thermal off gassing of volatile oxidi-
zable compounds from the solids. This off gassing 
caused the MOS voltages to slowly increase before 
the start of combustion caused a more rapid rate of 
increase. This period of a slow rate of MOS voltage 
increase was often complicated by a slow decrease 
in the slope of the MOS voltage curve as the rate of 
emission of volatiles decreased. For these reasons, a 
visual decision was made on each set of MOS data 
when combustion was being sensed. The period be-
tween the time of visual indication of hazardous 
combustion in the MOS data and the time predicted 
by the NN computer algorithm from the 13 data sets 
ranged from 2.13 min to 9.67 min with the mean pe-
riod being 5.57 min and the standard deviation of the 
periods being 2.51 min. 

After the boundaries were determined for the 
three temporal periods of each experiment, the MOS 
data were digitized to improve the NN classifica-
tions of the three periods. In the clear-air period, the 
MOS input to the NN was set to 0. In the diesel-
exhaust period or when the MOS voltage was less 
than ten standard deviations from the clear-air mean, 
the MOS input to the NN was set to -1. In the com-
bination, diesel-exhaust and hazardous-combustion 
period or when the MOS voltage was more than ten 
standard deviations from the clear-air mean, the 
MOS input to the NN was set to 1. Only sensor data 
for the periods ranging from initial clear air to smol-
dering combustion were needed in the NN to dis-
criminate the hazardous combustion from the diesel 
exhaust, since hazardous combustion detection was 
achieved in all of the data sets without considering 
the periods of flaming combustion. The total time 
intervals tested from each of the 13 data sets ranged 
from 1.36 hr to 2.21 hr with the mean time interval 
being 1.82 hr and the standard deviation of the time 
intervals being 0.32 hr. 

To remove the effect of the different initial values 
of the smoke sensors from experiment to experi-
ment, the initial smoke sensor data was normalized 
to a mean value of one during the clear-air periods 



of each experiment yielding a nominal experimental 
signal range from zero to one. The clear-air, mean 
background concentration of CO was subtracted 
from the CO data to yield a nominal clear-air CO 
concentration of zero.  The CO data, the processed 
data from two sensors (the digitized MOS and the 
normalized, optical smoke sensors), and the product 
of the CO and the normalized smoke sensor data 
(COXSmoke in figures 3 to 7) were used as the NN 
input layer. The selection of the product of the CO 
and the normalized smoke sensor data was deter-
mined by trial-and-error from various combinations 
of the sensor data in order to minimize the time in-
tervals from onset of combustion to hazardous com-
bustion detection and the number of false alarms. 

The robustness of the classifications was demon-
strated in one of the belt experiments when a mis-
taken increase of about 50% in the ventilation veloc-
ity occurred during the diesel idling period and just 
before combustion of the conveyor belt began. The 
only difference between this experiment and the 
other belt experiments was a smaller percentage of 
samples (56%) during the belt combustion period 
from station-2 data that were detected by the NN as 
being belt combustion. Even with this relatively low 
percentage, when the belt combustion was detected, 
the probability was much above 0.5, the minimum 
certain-detection probability, and remained well 
above 0.5 for the rest of the test period. In other 
words, when the alarm for hazardous combustion 
started, it remained in alarm until the test was termi-
nated. This pattern of the NN alarm remaining in an 
alarm state during the rest of the test period occurred 
in all of the 13 tests. Also, since the probabilities 
were consistently less than a third, the minimum 
probability for a false alarm, during the initial peri-
ods of the experiments before hazardous combustion 
began, no samples were detected as being hazardous 
combustion during these periods or there were no 
false alarms. No false alarms occurred even though 
the diesel exhaust was not cleaned and during one of  

 

the tests the diesel exhaust produced a peak concen-
tration of 38 ppm of CO at the station closest to the 
diesel locomotive. Figure 2 shows a typical plot of 
the probabilities of detection of hazardous combus-
tion during a coal experiment, the second coal ex-
periment from station-1 data, and during a belt ex-
periment, the third belt experiment from station-2 
data. The probabilities in figure 2 are representative 
of the probabilities generated from the other 11 test 
data sets–meaning the values ranged from less than 
0.2 initially to greater than 0.8 when the hazardous 
combustion was detected. 

The NN input variables from the coal experiment 
without diesel exhaust are shown in figure 3 as a  

 
function of time from the start of the experiment. 
The plot of the continuous MOS data, which was not 
used as an input, is shown only for comparison with 
the digitized MOS (dMOS) data. Sets of inputs from 
stations 1 and 2 for the third and second coal ex-
periments with diesel exhaust are shown in figures 4  

 

 
and 5, respectively. The sets of inputs from stations 
1 and 2 for the third belt experiment are shown in 
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Figure 3. Inputs to the NN from station-2 data from the first
coal fire without diesel exhaust. 
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predicted fire alarm are indicated as vertical lines on 
the figures. When the dMOS data responded to the 
hazardous combustion, a temporary plateau formed 
as the data returned to within the range of ten stan-
dard deviations from the clear-air mean. Even with 
these temporary, clear-air, digitized-MOS values of 
0, the responses of the other sensors together were 
sufficient to prevent the NN from classifying as 
clear air these small time intervals. 

 
All of the 13 sets of data collected were tested by 

the trained neural network–which also included the 
two data sets constituting the training file. A com-
bined total of 10,359 temporal samples was col-
lected from the sensors for the periods when clear 
air occurred. During these periods, all samples 
within the data sets were correctly classified as be-
ing from clear air. A combined total of 17,185 tem-
poral samples was collected from the sensors for the 
12 periods when only diesel exhaust and air were 
flowing over the sensors. During these periods, all 
samples within the data sets were correctly classified 
as being from a diesel-exhaust-air mixture. The main  

 

reason that no diesel exhaust data were classified as 
clear air in all 12 data sets was because the change 
in the dMOS values dominated the other sensor 
changes at the start of the detection of the diesel ex-
haust. A somewhat similar effect occurred later in 
the experiments. At the time the dMOS values tem-
porarily returned to a value of 0, the NN signaled 
hazardous combustion in all 12 of the diesel tests. 
The period between the first temporary dMOS value 
of 0 and the value of 1 when the MOS sensor de-
tected hazardous combustion from these 12 data sets 
ranged from 32 s to 210 s with the mean period be-
ing 88 s and the standard deviation of the periods 
being 53 s. If the heating rate had been slower, these 
periods would have been larger. More volatile oxidi-
zable gas would have been dissipated over a longer  

 
heating period causing the time interval from smol-
dering combustion to flaming to also increase. 
Without the CO and smoke sensors, the MOS sensor 
would not have detected the smoldering combustion  
until later with the lag in detection depending on the 
rate of heating of the flammable material. In the first 
coal test, without diesel exhaust, only at the time the 
dMOS values became 1 did the NN signal a coal 
fire. A combined total of 12,485 temporal samples 
was collected from the sensors for the 12 periods 
when air mixed with diesel-exhaust and hazardous-
combustion products was flowing over the sensors. 
During all of these latter periods, percentages rang-
ing from 5% to 44% of the samples were classified 
initially as being from diesel exhaust with the mean 
percentage being 18% and the standard deviation of 
the percentages being 11%. The NN classified the 
first 6% of 2,509 temporal data samples from the 
hazardous combustion period of the first coal ex-
periment as being from clear air. 
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Figure 7.  Inputs to the NN from station-2 data from the third
belt fire with diesel exhaust. 
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Figure 6.  Inputs to the NN from station-1 data from the
third belt fire with diesel exhaust. 

 
 

 
 



5  CONCLUSIONS 
 
1. A two-layer, perceptron neural network (NN) 

with 10 process elements in the first layer and 5 
process elements in the second layer was supe-
rior to other neural networks investigated at dis-
criminating diesel exhaust from coal and belt 
smoldering combustion without any false alarms. 

2. Digitized MOS-sensor data, CO-sensor data, op-
tical-path smoke-sensor data, and the product of 
the CO and smoke-sensor data were the best in-
puts found for the discriminations. 

3. All clear-air and diesel-exhaust data were recog-
nized by the NN from 13 sets of inputs from four 
coal and three belt combustion experiments with 
two collections of sensors 18 m and 148 m from 
the fire sources. 

4. Smoldering combustion was detected by the NN 
within 9.67 min from the first visual indication 
from the MOS sensor at a station that hazardous 
combustion products were present for all of the 
13 sets of inputs. 

5. The applicability of a neural network to the dis-
crimination of hazardous underground-mine 
combustion from diesel-engine exhaust was de-
termined to be viable. 
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