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ABSTRACT:  Understanding methane emissions in  underground coal mines is critical for a safe and  productive mine. In addition  
to reasonable estimation  of initial coalbed  reservoir parameters, it is also crucial that changes in effective stress due to mining and  
pore pressure reduction are taken into account due to their effects on porosity and  permeability. Primary parameters for estimation  
of emissions or modeling of the mining environment for this purpose are porosity and permeability which can change dramatically  
as a result of stress redistribution associated with mining and gas desorption from a large coal volume. These parameters affect the 
emission rates and  ventilation requirements, as well as water inflow into the working environment. Stopping leakage, on the other 
hand, is a secondary stress dependent factor in estimation of emissions, as convergence of the roof and floor strata, compromising 
the integrity of the stopping, may result in leakage, making  prediction of ventilation requirements difficult.  

This paper aims to examine the effects of  porosity and  permeability changes of the coal seam on methane emissions in an 
underground continuous miner section. The  models were developed and executed in a dynamic fashion to simulate  an advancing  
section. Through this process, the changes of effective stress in coal, particularly their change paths, on  porosity and permeability  
were incorporated into the models and methane emissions, concentrations, air requirements, water inflow and possible leakage 
from the stoppings were investigated using a conventional coalbed methane reservoir model.  

1.  INTRODUCTION 

Coalbed methane (CBM) is both a valuable domestic  
energy source in the United States and a safety concern 
in underground coal mines.  In 2007, US underground  
coal mine operators reported 73 methane ignitions in 
underground coal mines. In unfortunate situations, these 
ignitions may lead to an explosion and to a major mining 
disaster. Thus, the ability to model methane emissions in 
underground coal mines as realistically as possible 
allows for the optimization of coalbed methane 
degasification systems ahead of mining, appropriate 
design of the mining geometry, and appropriate design  
of the mine and section ventilation systems, providing 
for enhanced safety and productivity.  

There are various parameters involved in coalbed 
methane reservoir modeling that span from depth of 
seam, coal thickness, porosity, permeability, pressure, 
methane content and isotherms.  Particularly, the 
influence of in-situ and mining induced stresses on coal  

porosity and permeability during mining cannot be 
underestimated for effective degasification and 
ventilation of coal mines.   

Additionally, m ining-induced and the resultant effective 
stress on a coal seam plays an important role in the 
integrity of ventilation controls, such as stoppings, in 
underground mines.  Roof and floor convergence will 
usually result in some structural damage to stoppings, 
allowing leakage of air from intake to return and 
reducing the quantity  of air at the working face. 

By accounting for the influence of in-situ and mining- 
induced stress on the reservoir parameters, methane 
emissions in an active continuous mining section can be  
forecasted more accurately. 

2.  BACKGROUND 

2.1.  Coalbed Methane Emissions and Production 



Methane is formed in coal during the coalification 
process and also as a result of bacterial activity.  It is 
stored in coal both as a free gas and an adsorbed gas.  
The free gas and adsorbed gas exist in equilibrium in an 
undisturbed reservoir, but the introduction of a borehole 
or mine entries will disturb this equilibrium and cause 
gas to flow into the open area.  Flow occurs both in the 
micropores and in the fracture network or cleat system, 
which comprise of butt (short, discontinuous cleats) and  
face cleats (continuous cleats) [1].  The effects of stress  
on both the micropores and particularly on fracture 
network are important in characterizing the ability  of the 
coal to store fluid and to allow gas and water flow. The 
ability of a dual-porosity porous medium storing fluid 
and allowing fluid flow within are directly related to its  
porosity and permeability, respectively, which both are 
dependent on the effective stress level of the coal seam.  
Effective stress can be defined as the resultant stress due  
to in-situ and mining induced stresses collectively,  and 
impacts the porosity and permeability  of the cleat system  
more than the microporous matrices.     

2.2. 	 Coalbed Methane Reservoir Modeling 
Coalbed methane reservoir modeling is necessary, both 
for the design of appropriate mining geometry and 
ventilation and for the design of degasification systems.  
Reservoir simulators require a large number of 
interrelated parameters for model building. Reasonable 
estimation of these parameters is essential in producing a  
realistic simulation. 

Young gives a summary of the minimum data required 
for coalbed methane reservoir modeling [2]:  

 	 Reservoir description (geometry, structure, 
depth, thickness, stratification, water saturation, 
and pressure) 

 	 Fluid Pressure-Volume-Temperature (PVT) data  
(gas viscosity and composition)  

 	 Time dependent well data (fluid flow rates and 
bottom-hole pressures), in other words recurrent  
data. 

Porosity and permeability are important descriptors in 
the characterization of storage and flow of coalbed  
methane. Coalbed methane reservoirs are unique due to  
their pore structure. Pore structures in coal are divided 
into macropores (>50 nm), mesopores (2-50 nm), and 
micropores (<2 nm) [3].  The majority  of methane stored 
in a coal seam is adsorbed on to the walls of these 
micropores, while some gas is present as a free gas in the 
fracture, or cleat, network. This network is comprised of 
nearly orthogonal fractures distributed within the seam;  
it stores almost all of the water and plays a critical role 
in gas production and methane emissions due to its 
permeability and porosity. 

2.3. 	 The Effects of Stress on a Coalbed Methane 
Reservoir 

Understanding methane emission rates in underground  
mining is critical for the safety and productivity of a 
mine. Various factors control methane emissions during  
mining development, but the initial reservoir parameters  
and the mining parameters are the most important. Coal 
reservoir parameters that are sensitive to mining induced  
stresses and in-situ stresses include permeability and 
porosity. It is essential to consider stress and associated 
changes in porosity and permeability when modeling 
emissions from  a coalbed methane reservoir [4].  

Generally, a decrease in stress in a coal seam will result 
in desorption of gas followed by an increase in 
permeability due to matrix  shrinkage and opening of  
cleats [5, 6]. Stress will generally have a more 
significant effect on macropores and on cleats while 
leaving mesopores and micropores less affected [7].   
This effect changes the permeability of the coal seam,  
since the cleat structure is mainly responsible for 
permeability and its anisotropy.  Therefore, gas may  
flow preferentially in one direction due to this structure, 
usually along the face cleats. The spacing and orientation 
of cleats are generally related to the orientation of the 
present or past principal stresses prevailing in the field.   

It is important to note that the relative importance of 
stress with regard to permeability may differ  
significantly  in different coal basins, and that coal seam 
composition and fracture also play a significant role. 
However, in general, the anisotropic permeability tends 
to decrease as effective stress increases, indicating that 
high in-situ stress will cause the cleat system to close 
and lower the permeability and porosity of the seam [8]. 
Therefore, a permeability decrease due to either in-situ 
or induced stresses, and a permeability increase due to 
matrix shrinkage may occur concurrently during mining.  

Mining, when commenced, will have the effect of  
redistributing the in-situ stress.  As coal is removed the 
existing stress will be transferred to the adjacent in-place 
coal, creating zones of relatively  higher stress, referred  
to as abutment stresses.  Considered independently, this  
stress will cause a decrease in porosity and permeability.    

3. 	 MODELING PROCEDURE 

3.1.	  Reservoir Modeling Approach for Simulating 
Effects of Mining 

The model used for this case study is a three-entry 
continuous miner development section, typically 
practiced by several  mines operating in the Northern 
Appalachian basin. The mining geometry is displayed in 
Figure 1. The middle entry was modeled as the track  
entry,  intaking air, and the entry to the left of it in the 
advancing direction was designated as the belt entry or a 



  

 

neutral entry. The third entry was designated as the 
return entry.  Mine entries are modeled as boreholes; the 
borehole pressures are adjusted to match ventilation 
pressures found in the entries. Ventilation air input  was 
modeled with an injection well, which injected air at a 
constant rate of 37.69 m3/s (79,861 cfm). This value was 
determined from the pressure loss in the entries and 
allowing the injection pressure to increase to a maximum 
value of 102.4 kPa (14.85 psi). The return and  belt 
entries were modeled with production boreholes 
operating at 100.7 kPa (14.60 psi) and 101.0 kPa (14.65  
psi) bottom-hole pressures, respectively.  These 
boreholes were used as monitoring points where the 
amount of methane and air in the produced gas stream  
were recorded by the simulator to calculate methane 
inflow. The injected air from the track entry was split 
into two at the face based on the pressure differences in 
the other two entries and the leakage across the 
stoppings, when it occurred.  

 
  

    

 
Mining 
direction 

Fig. 1. A cut-away picture of the model showing entries, 
pillars and mining direction. 

While methane inflow and its percentage in the 
ventilation air are of prime importance, water inflow into 
the mining environment from coal seam may be 
important also. The reservoir model was constructed as a  
two-phase flow model where water is  mobilized as a 
result of effective stress reduction in the fractures  
following a relative permeability curve that was chosen  
and used for history matching in earlier studies [9].  
Similarly, entries were assigned relative permeability 
values which would maximize gas flow while enabling 
water movement towards the monitoring points to 
quantify water inflow.  

Both mining and ventilation are dynamic processes in 
nature, resulting in varying ventilation requirements 
based on changes in operating conditions. As the 
continuous miner advances, a new space  must be  
ventilated, and new surfaces that liberate gas into that  

space are created. In terms of modeling, this situation is  
a moving-boundary-value problem. In this study,  
development of a three-entry continuous  mining model 
was handled using “restart” model runs. These models 
were run sequentially, each characterizing an advance in  
entry  development with a specified development rate,  
during which coal bed properties were replaced with the 
assigned properties of entries in the  models. Each restart 
run was performed in such a way that entries would 
progress based on a rate of 15.2 m/day (~50 ft/day) that 
was scheduled in the recurrent data set. As the three-
entry system  was developed at the designated rates in the  
models by changing coalbed properties, the crosscuts 
were also developed at the same time. The resulting 
pillars were 38.1 m (125 ft) in length, 22.9 m (75.1 ft) in 
width and had the same properties as the coalbed.  
Entries and crosscuts were modeled as 7.62 m (25 ft) 
wide and 1.83 m (6 ft) in height.  During development of 
crosscuts, two stoppings (between track-belt and track-
return) were automatically created in the open crosscut 
of the previous restart run so that during each simulation 
the ventilation flow would always be circulated from the 
last open crosscuts. A relatively low permeability value 
of 98.7 μm2 (100 darcies) was assigned to the 
undamaged stoppings to represent the minimum leakage,  
where 98,700 μm2 (100,000 darcies) was used to  
simulate stress-related damage to stoppings in the model 
runs. These values were selected based on Bear [10]  and 
correspond to lower and upper permeability ends of 
highly fractured rock material [10]. The formulation of 
this model was similar to the earlier work detailed by 
Karacan [9].  The initial properties of the coal seam prior 
to effective-stress-reduction induced changes are given 
in Table 1.  

Table 1. Initial coalbed properties used in simulation   of 
 development mining. 

Parameter Values 
Coalbed thickness   1.83 m (6 ft) 
Coalbed pressure   2758 kPa (400 psi) 
Sorption time  50 days 
Permeability anisotropy (Kx/Ky)  4 

  Face cleat permeability (Kx) 0.00987 μm2 (10 md) 
Butt cleat permeability (Ky) 0.00247 μm  2 (2.5 md) 
Langmuir volume  13.6 m  3/ton (490 scf/ton) 

   Langmuir pressure 2248 kPa (326 psi) 
Initial water saturation (Swi) 60% 
Effective porosity   5% 
Irreducible water saturation (Swir)  10% 
Relative permeability to gas (Krg) 
at Sg  = 1-Swirr 

 0.35 
 

3.2.  Implementation of Stress Induced Changes 

Various factors control the methane emission rates  
during mining; the most important are the mining 
parameters and coalbed parameters [9].  As mining  



 

 

 

 

proceeds, the coal seam  and the overlying strata are  
exposed to mining induced stress. These stresses may  
cause some deformation in the pillars and the ribs of the 
coal seam, as well as convergence of the roof and floor. 
The stresses in the ribs and pillars of the roadways result 
in deviations in the original permeability and porosity of  
the coal seam. These deviations eventually result in 
changes in methane and water inflow into the roadways  
that must be controlled with proper ventilation and 
pumping. Additionally, roof and floor convergence may  
result in damage to stoppings, causing intake ventilation 
air to leak to the return entries, reducing the volume of 
fresh air that can be utilized at the face. In this study,  
convergence was neglected due to the model limitations;  
however, its effect on stoppings was represented by 
increasing the stopping permeability three orders of  
magnitude from an original permeability of 98.7 μm2 

(100 darcies) to 98,700 μm2 (100,000 darcies).  These 
numbers are consistent with permeability values of 0.1 
μm2 to 100 μm2 for undamaged cinderblocks in the  
literature [11] and those of highly fractured rock masses 
given in [10]. 
 
Griffith’s crack theory was utilized to model changes in  
permeability at the entry  boundaries due to mining- 
induced stress [12]. This theory describes an elliptical 
crack, which represents the mine opening in this case,  
and the stresses at its edges, which may represent the 
stresses occurring in pillars and in the ribs extending into 
the coal seam [13]. According to this theory, the vertical  
stress distribution along the edge of the opening is given 
by: 
 
 yy  P coth(e) (1)

where e  cosh1x c (2)

 yy : The vertical stress in the rib 

P :   Stress at infinity perpendicular to the crack,  
generally related to the overburden stress  

x :  Distance into the rib 
c :   Half the crack width, half the entry width in this  

case.  
 
It has been postulated previously  by Hoch et al. [14] that  

the  xx  curve had the same shape as the  yy  ; however, 

it was a fraction less in magnitude. This fraction amount 
could be approximated by the expression: 
 
 xx   yy   (3)

Where:  
 xx : horizontal stress 

 yy : vertical stress  

 :   Poisson’s ratio, approximately 0.25 for coal.  

 

 

A simple  elastic behavior concept was used to 
implement the stress level during extension of the 
opening. In addition, desorption of gas, and drainage of 
gas and water from coal cleats into the entries result in 
changes in pore pressure, which couple with mechanical  
stresses and cause compaction of coal, thus changes in  
fluid flow related properties, in relation to the pore-
pressure stress path. For these cases, four different stress  
paths (SP), or elastic response curves of the  coal 
material to a given pressure, were defined to change 
permeability  and porosity of the coal seam in accordance 
with changes in the pressure for pillars and the ribs 
around the openings. Figure 2 illustrates the four cases 
and the resulting changes in porosity and permeability,  
as calculated in comparison with the initial values after 
mining induced stresses are incurred. 
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Fig. 2.  Permeability and porosity change curves for different 
stress paths during entry development. 

 In these cases,  
SP1 was considered the base stress path, where a  
stopping permeability value of 98,700 μm2 (100,000  
darcies) is also used, in addition to 98.7 μm2 (100 
darcies) for comparison of a damaged stopping  with  
undamaged one.  Damage to the stoppings was reflected 
in their permeability  values, which was not a function of 
pressure; therefore all the damaged stoppings had 
permeability values of 98,700 μm2 (100,000 darcies) in 
the model.  

For porosity-dependent permeability changes, the  
following relation was used [15]: 
 

k   
3 

   (4) k o  o  
 
In Figure 2, all starting and end point values for different 
SPs in porosity and permeability were set to the same  
values. Thus, the effect of end points was eliminated and 
just the effect of SP change in elastic region was  
considered. 



4.  RESULTS AND DISCUSSION 

Figure 3 displays samples from  model runs. These 
pictures represent the last 137 m (449.5 ft) of  
development.

 

 
  

 

Fig 3.  Reservoir pressure contours (A) and porosity contours 
(B) for the last 137 m (450 ft) of development.  Mining is 
advancing towards right side of the figures. Color legends are 
and the values are in pressure units, psia. 

 A total of 518 m (1,700 ft) of development 
was modeled in this work. Figure 3A shows the pressure 
contours while 3B shows the effective porosity contours  
at the corresponding time step. In both figures, the 
arrows show the direction and magnitude of water 
velocity scaled by the logarithm in order to be able to  
show low and high values in the same figures. These  
figures illustrate that the velocity of water is highest at  
the headings where there are sudden drops in pore  
pressure and it declines around the entries and in the 
pillars. Conversely, porosity  and the related permeability  
parameter reach the lowest values in the pillars and in 
the ribs. There is a high porosity and permeability zone 
ahead of the entries that result from the transient increase  
in pore pressure in this zone. 

The results of the simulations for different stress paths  
(SP) were evaluated for their effects on methane and 
water inflow into the entries. Figure 4 shows the daily  

methane inflow rates into the belt and return entries (A) 
and the daily cumulative emissions from these two  
entries (B) while a constant air injection rate of 37.69 
m3/s (79,861 cfm) has been provided from the middle 
(track) entry. 
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Fig. 4.  Daily methane inflow rates into the belt and return 
entries (A) and the daily cumulative emission from these two 
entries (B) as a function of development distance and stress 
path results during mining. 

A 
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 Figure 4A shows that the highest methane  
emissions were obtained from the return entries when 
SPs of 4, 1,  3 and 2 were followed, respectively. The 
emission level from the belt entry followed the same SP 
trends. This was due to the fact that when SP4 was being 
followed the porosity and permeability of coal in pillars 
and in ribs around the entries followed a gradually 
compacting trend with decreasing pressure, as opposed 
to a sudden compaction and decrease in directional  
permeability  that was experienced in SP2. Therefore,  
during mining of the entries, a more gradual compaction  
resulted in a higher gas inflow rate due to a slower 
decrease in absolute and effective permeabilities. On the 
other hand, methane inflow rates were about two times 
higher in the return as compared to the belt entry  
because the  pressure was 0.34 kPa (0.05 psia) lower in  
the return entry.  The cumulative methane emission rates  
from these two entries were calculated to reach values of 
about 15.7 m3/min (557 cfm) at the end of 518 m (1,700  
ft) development, when SP4 was followed during mining  
(Figure 4B) 



 

 

Figure 5 shows the methane percentages in the  
cumulative ventilation air as measured at the monitoring 
points at return and belt entries as a function of linear 
entry  distance and the stress paths given in Figure 2. 
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Fig. 5.  Methane percentages in the cumulative ventilation air 
as measured at the monitoring points in return and belt entries 
as a function of linear entry distance and the stress paths given 
in Figure 2. 

This figure shows that the methane percentage increased  
in the ventilation air in accordance with the methane 
inflow rates as developed distance increased. In all SP 
conditions the ultimate methane percentage at 518 m 
(1,700 ft) is <1%, which is the statuatory limit. 
However, as discussed before, the methane content in 
the air increased more when the compaction of the coal 
did not occur abruptly as a result of decrease in coal 
seam pressure as mining continued. From these data, it 
appears that for longer linear developments the  
percentage of  methane in ventilation air may exceed the 
1% limit, especially in the SP4 case.  

From Figure 5 it is also evident that a sudden 
compaction of the coal with small decreases in pressure 
during mining, the case in SP2, may be desirable since 
this will result in less methane inflow. 

The reservoir  model was developed with two-phase flow  
formulation; water was also flowing in the coalbed due  
to changes in stress variations and effective permeability 
to water during mining.  In some situations, water inflow 
into the mine may be high enough to require pumping. 
In this study, the results of water inflow into entries 
associated with changes in SP during mining were  
determined and the data are displayed in Figure 6. 
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Fig. 6. Daily water inflow rates into the belt and return entries 
(A) and the daily cumulative water production from these two 
entries (B) as a function of development distance and stress 
path results during mining (bbl: barrels). 
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Figure 
6-A shows the difference in water inflow into return and  
belt entries, as well as the effect of SP. More water was  
measured in the return entry, about 11.9 m3/day (75 
bbl/day). The rate in the belt entry was approximately 
8.74 m3/day (55 bbl/day). The values did exhibit an 
increasing trend with advance distance, similar to 
observations for methane in Figures 4 and 5. As 

expected, water control in longer developments is less of  
an issue than methane control. However, more  
importantly, the water inflow trend is opposite of the 
methane inflow trend with respect to SPs. This is due to 
two mechanisms that occur simultaneously in  this  
model. Normally, in a coal seam reservoir free of any 
major compaction due to mechanical effects, or similar  
sorptive tight gas reservoirs, most gas resides in 
micropores, and most water resides in cleats or fractures. 
In these reservoirs, gas is released from the microporous 
matrix as water removal causing the pore pressure to  
drop. Thus, the faster the pressure drops, the more gas  
desorbs from coal and diffuses into the cleats, where 
eventually  the relative permeability to gas increases and 
the gas rate increases at the expense of water rate, which 
initially was higher. In this model, since fractures 
deform continuously as well with the stress changes, 
water residing in fractures has been forced out of the 
pillars and ribs. So, as a result of the combined effect of 
compaction of fractures and coal matrix, water rate  
increased when compaction occurred abrubtly, opposite  
of what was  observed in the methane inflow case. The 
cumulative water flow rate from return and belt entries 
was approximately  21.5 m3/day (135 bbl/day) when the 
development distance was 518 m (1,700 ft). 



 

The discussion thus far has included examination of how 
changes in SP with mining affect methane and water  
inflow. In these cases, all stoppings were given  
permeability  values of 98.7 μm2 (100 darcies). In other 
words, all stoppings were considered undamaged. A 
model case was created to compare the effect of 
permeability  of stoppings by using the stress path SP1. 
In this case, the stoppings were assigned a permeability 
of 98,700 μm2 (100,000 darcies), which was considered 
a damaged stopping for comparison purposes. The main 
effect of this change was expected to be a increase in 
leakage across the stoppings and a increase in the 
ventilation air in return entries, and a consequent 
decrease in belt air rate, which will either be insufficient 
to maintain statutory methane levels as mining continues 
at the face with constant ventilation air capacity, or will  
increase the ventilation costs significantly in order to  
provide desired amount ventilation air at the face for 
effective dilution. The result is displayed in Figures 7 
and 8.  
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Fig. 7. Comparison of two different stopping permeabilities on 
the ventilation air quantity in return and intake entries. 

 
 

 
  

Fig. 8.  Comparison of leakage paths for undamaged (A) and 
damaged (B) stopping permeabilities.  Velocity vectors are 
shown in black, mining is from left to right.  Denser cross 
entry vectors in B indicate more leakage due to stopping 
damage. 

In Figure 7, the air rates measured in return and belt  
entries as a function of development distance are shown. 
It can be observed that the change in stopping 
permeability  resulted in an increase in air quantity in the 
return, and a decrease in air quantity in the intake, as air  
leaked from intake to return.  

CONCLUSIONS  

The results indicate that a gradual change in reservoir 
permeability  and porosity (SP4) as a result of mining 
induced stress produces the highest quantity of methane  
emissions, while water production is actually higher with 
a sudden decrease in permeability and porosity (SP2) as 
a result of mining induced stress.  This phenomenon is 
most likely due to two mechanisms that occur  
concurrently.  Gradual compaction will cause water to 
flow out of fractures, lowering the pore pressure and 
causing gas to desorb from the coal and diffuse into the 
fracture network, eventually increasing the relative  
permeability  of the reservoir to gas.  However, a sudden  
compaction will force water out too quickly and also  
cause the fracture network to compress, effectively 
lowering the permeability  of the reservoir to gas.  

Stopping damage due to mining induced stress was 
modeled by increasing the permeability of the stopping 
to simulate air leakage, and determine the effects of this 
leakage on methane presence in the ventilation air.  This 
increase in permeability affected the ventilation air  



 
 

quantity, increasing air in the return and decreasing it in 
the belt entry, as expected.  Also, stopping leakage 
becomes more significant as a section advances. A  
damaged stopping with a permeability of 98,700 μm2  
(100,000 darcies) was set and applied all the way along  
the section because convergence could not be integrated 
into the reservoir simulator and applied to the stoppings.  
A more realistic approach might be to apply a high  
permeability  at the most outby stoppings (farthest from 
the mining face) and gradually reduce stopping 
permeability  as they move closer to the face.  

Although a sudden compaction will produce less 
methane to the ventilation air it may also cause further 
damage to stoppings, which will either reduce the 
ventilation air quantity that is available to dilute the 
methane or require higher fan costs to effectively dilute  
the methane.  It is  evident from these results that the 
effects of mining induced stress on both the reservoir 
properties and the ventilation controls should be 
considered when designing  mining geometry (layout?) 
and ventilation in a gassy mine. 

Future research will involve improving the simulation of 
leakage across damaged stoppings as detailed above.   
Additionally, more advanced modeling of mining  
induced stress would also improve the model, most 
likely with software such as FLAC [16].  
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