Measuring diesel particulate matter in underground mines using
submicron elemental carbon as a surrogate

J.D. Noll, S.E. Mischler, G.H. Schnakenberg, Jr. & A.D. Bugarski
U.S. Department of Health and Human Services, Public Health Service, Centers for Disease Control
and Prevention, National Institute for Occupational Safety and Health, Pittsburgh, PA

ABSTRACT: Elemental carbon (EC) is used as a surrogate for regulating the exposure to diesel particulate
matter (DPM) of underground metal/non-metal miners. EC was chosen as a surrogate because EC is selective to
DPM and is a major component of DPM. Using EC as a surrogate also gives one the advantages of no sampling
artifacts and being able to sample at all locations in the mine. Currently, EC represents DPM well in underground
mines. Some control technologies have been shown to possibly alter the relationship between DPM and EC and
characteristics of DPM. Therefore, future work will investigate the relationship between DPM and EC as new

control technologies are implemented.

1 INTRODUCTION

1.1 Background

Long-term exposure to diesel exhaust has become a
concern because diesel emissions are believed to be
a potential carcinogen (NIOSH, 1988). In addition,
acute overexposure to diesel exhaust has been linked
to deleterious health effects such as eye and nose irrita-
tion, headaches, nausea, and asthma (Kahn and Orris,
1988; Rundell et al., 1996; Wade, 1993). Measure-
ments have shown that underground miners can be
exposed to over 100 times the typical environmental
concentrations of diesel exhaust and over 10 times the
concentrations measured in other work environments
where diesel engines are common (Cantrell and Watts,
1997; Nauss, 1998; Haney, 1992).

In the United States, the Mine Safety and Health
Administration (MSHA) has promulgated rules to
limit the exposure of metal/non-metal underground
miners to diesel particulate matter (DPM) to
500 wg/m> for an interim limit and 200 wg/m> for a
final limit (MSHA, 2001, 2005). One issue that had to
be overcome was how to measure for DPM.

1.2 Difficulties in measuring DPM in
underground mines

DPM is a complex mixture of particulate elemental
carbon (EC) or soot, particulate and particle bound
organic carbon (OC), sulfates, some metals, etc.
(Kittelson, 1998). Mass measurements of DPM are
prone to interferences from other sources of aerosols
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(mineral dust, cigarette smoke, etc.) in the mining
environment and are not sensitive enough for the
concentrations near the proposed final limit (below
200 wg/m?). Therefore, a surrogate was needed to
determine DPM exposure.

Initially, total carbon (TC) was considered by
MSHA to be the most adequate surrogate for
DPM because TC accounts for over 80% of the
DPM (MSHA, 2001; Pierson and Brachaczek, 1983;
Kittelson, 1998). However, the EC and OC particles
from mineral dust and OC aerosols from the other
sources commonly present in underground mines,
such as environmental tobacco smoke and oil mist,
were found to interfere with the TC analysis.

A size selective sampler (Cantrell and Rubow, 1991;
McCartney and Cantrell, 1992; Cash et al., 2003, Noll
et al., 2005) has been shown to effectively segregate
the coarse mineral dust from the generally submicron
DPM. Unfortunately, the size selective samplers are
not very efficient in removing cigarette smoke and oil
mist (OC aerosols that generally belong to the same
size category as diesel aerosols). Therefore, cigarette
smoke and oil mist cannot always be avoided when tak-
ing personal samples. For example, when TC vs. EC
was plotted from personal samples below 400 pg/m?
from smokers and non-smokers from two stone mines
(samples corrected for adsorbed vapor phase OC),
there is greater variability in the TC and EC rela-
tionship as samples are potentially exposed to more
interferences (smokers). The R? goes from about 0.7
to 0.9 when the data from smokers are taken out.
Figure 1 also shows that at the same EC values when
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Figure 1. TC vs. EC of personal samples from smokers and

non-smokers in two stone mines.

the majority of the samples were exposed to poten-
tially more cigarette smoke that a larger TC value was
measured. This is probably due to the additional OC
from the cigarette smoke.

At this time, no method to correct for these inter-
ferences has been found. NIOSH did some studies on
using solanesol as a possible surrogate for cigarette
smoke but solanesol was found to be too unstable
(Tucker and Pretty, 2005).

As a result, MSHA turned to using EC as a sur-
rogate for DPM for the interim limit since no other
sources of submicron EC are known to exist in the
metal/non-metal mining environment and EC is a
major component of DPM (MSHA, 2005). This paper
gives an overview of the sampling and analytical
methods presently used to measure EC and some issues
when using EC as a surrogate.

2 SAMPLING AND ANALYTICAL METHODS

2.1  Sampling methods

2.1.1  Personal sampling
For taking personal samples, a personal sampling
pump, a 10-mm Dorr-Oliver cyclone, a submicron
impactor, and two quartz filters placed in tandem (in
series) are used. The pump is operated at 1.7 Ipm.
The submicron impactor segregates the mineral dust
from the DPM. This is necessary when using EC as a
surrogate because it avoids overloading a filter with
mineral dust, some mineral dusts contain EC, and
it provides a cleaner sample. When impactors were
first being used, the mining industry brought up con-
cerns with cassette performance and possible defects
(MSHA, 2003). The submicron impactor has been
shown to be efficient in collecting DPM while allow-
ing less than 10% of mineral and coal dust to penetrate
in both laboratory and field studies (Noll et al., 2005;

Birch and Noll, 2004; Noll and Birch, 2004). For exam-
ple, at a dust concentration equivalent to 8-hr time
weighted average of 3 mg/m>, a sub micron impactor
was shown to collect only 2% of the respirable dust
(Noll et al., 2005).

2.1.2  High volume sampling
When testing the efficiencies of control technolo-
gies in underground mines, the concentration of DPM
can be low. To collect enough material to be at and
above the limit of quantification for NIOSH Analyt-
ical Method 5040, one might have to sample for many
hours. When doing research in the field, one does not
always have this luxury. A high-volume (HV) sam-
pling train was developed by Bugarski et al. (2003,
2005) to collect sufficient material for the analysis of
TC and EC using the Method 5040 while still avoiding
mineral dust for control technology studies. The HV
flow rate was achieved by merging flows from five
classifiers, each consisting of a 10-mm Dorr-Oliver
cyclone followed by a U.S. Bureau of Mines (BOM)
single stage diesel impactor, into a single stream. Flow
rates between 1.7 and 2.0 Ipm were maintained through
each cyclone and impactor pair. At this sampling flow
rate only particles with geometric mean smaller then
0.8 wm were deposited on the filters. All five clas-
sifiers were attached to a symmetrical plenum that
distributed a total flow rate between 8.5-10 Ipm uni-
formly among the five streams. Each of the classifier
assemblies was connected to the plenum chamber by a
3-foot long section of conductive tubing. The outlet of
the plenum was directly connected to a stainless steel
25 mm diameter filter holder containing two stacked
25 mm tissue quartz fiber filters. As seen in Table 1,
the high volume method gave similar results as the per-
sonal sampling methods when collecting samples in an
isolated zone of a metal mine (these were when no con-
trol technologies or just alternative fuels were used).
This high volume sampling method used mass flow
controllers or critical orifices to control the flow rate
and needed electricity to run. However, electricity may
not always be available at sampling locations in the
underground mine being tested. Therefore, we are
currently testing a more portable assembly using a
high flow personal pump with a cyclone with a 1 pm
cutpoint at around 8 Ipm (see Figure 2).

2.2 NIOSH analytical method 5040

After a sample is collected, it is sent to a laboratory and
analyzed for elemental and total carbon using NIOSH
Method 5040 (Birch, 2004). This analytical method
analyzes for OC and EC in two different stages. In the
first stage, the OC is measured by ramping the oven
temperature over four progressively higher tempera-
ture steps programmed into the instrument, with the
last step being at about 870 °C in a pure helium (He)
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Table 1. High volume (9.7 lpm) sampling vs. standard sam-
pling at 1.7 Ipm.

EC concentration between high volume sampling and
personal sampling method

HV Standard method

(Lg/m’) (Lg/m?) % difference
181 172 5

205 167 20

287 257 11

319 289 10

401 353 13

414 376 10

311 296 5

213 198 7

HV - high volume sampling

Standard method — personal sampling method

% difference = (HV — standard method)/average(HV —
standard method) x 100

Figure 2. A high volume setup consisting of a cyclone with
a 1 wm cutpoint at 8 Ipm, filter to collect particulate and a
high flow rate (5-15 Ipm) personal pump.

atmosphere. The EC does not evolve because there is
no oxygen (O;) available for it to react. The evolved
OC is oxidized to carbon dioxide (CO,), reduced to
methane (CHy4), and finally measured using a flame
ionization detector (FID). In the second stage, the EC
is measured by reducing the oven temperature to about
600 °C and then again raising the temperature to about
900°C in a He/O, atmosphere (O, is now present to
react with the EC to form CO,;). The EC is then mea-
sured in the same way as the OC. TC is simply the
sum of OC and EC. The NIOSH Method 5040 also
optically corrects for pyrolysis (charring) of OC.

NIOSH 5040 has been shown to meet the NIOSH
accuracy criteria and has given good results for inter-
laboratory testing (Birch, 2004).
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3 ECASA SURROGATE

3.1 Selectivity of EC

As mentioned earlier, submicron EC (after using an
impactor) is selective to DPM in the underground
metal/non-metal mining environment. This gives us
the advantage of sampling for DPM and taking per-
sonal samples in all areas of the mine. If one tried to use
TC as a surrogate, one might have to develop a com-
plicated sampling strategy to avoid the interferences.
A complicated sampling strategy could preclude areas
with the highest concentration of DPM.

In addition to avoiding interferences, known OC
sampling artifacts when using quartz filters (Eatough
et al., 1995; Kirchstetter et al., 2001; Turpin et al.,
1994) do not affect EC based methods. Quartz fil-
ters are known to adsorb vapor-phase OC (not part
of DPM). We routinely observe between 3040 pLg/m?>
vapor-phase OC adsorbed by the quartz filter in min-
ing samples. This could cause a 19-25% errorina TC
result at the proposed final limit of 160 pg/m?® TC if
not corrected. There is also a possibility of some OC
semi-volatiles evaporating and causing a negative bias
relative to the TC results. These artifacts do not affect
the EC results.

Coal dust also has less of an effect on EC results
than TC or DPM mass results since a smaller por-
tion of coal dust is EC (Birch and Noll, 2004; Noll
and Birch, 2004). In both field and laboratory studies,
when using a sub micron impactor, coal dust con-
tributed relatively minimal (<25%) to the EC results
when measuring 160 wg/m® TC concentrations, but in
a few instances, even when using the impactor, the
coal dust contributed significantly (>25%) to the TC
values when measuring DPM at 160 jLg/m® TC (Birch
and Noll, 2004; Noll and Birch, 2004).

3.1.1 How is DPM represented by EC

The strong points of using EC as a surrogate are that it
isamajor part of DPM, is selective to DPM, and can be
sampled and measured accurately. One potential issue
when using EC as a surrogate for DPM is that the EC
fraction of DPM may change depending upon various
factors such as engine duty cycle, fuel type, control
technology, etc.

Some preliminary data demonstrates that, at this
time, EC represents DPM in underground mines well
but may change as new control technologies are imple-
mented. Bugarski et al. 2003, 2005 collected DPM
mass (measured using TEOM), TC, and EC samples
in an isolated zone in a metal mine. The isolated zone
was a section in the mine where only clean air entered
and ventilation could be controlled. This allowed mea-
suring the diesel emissions from a vehicle without
interferences. As seen in Figures 3a and 3b, a lin-
ear relationship existed between DPM and EC and
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Figure 3. (a) DPM (mass) vs. EC for vehicles in the isolated

zone. (b) TC vs. EC for vehicles in the isolated zone study.

between TC and EC for the types of vehicles tested
in this mine (Noll et al., 2005).

This data was obtained when the vehicles ran
No. 2 diesel fuel, diesel oxidation catalytic convert-
ers (DOCs), biodiesel, or water emulsified fuels.
These conditions are present in operating underground
mines.

This relationship was confirmed when sampling in
four mines during actual production (see Figure 4)
(Noll et al., 2005). The sampling was done at the
main exhausts of the mine where oil mist and cigarette
smoke should be so diluted compared to diesel that
they have minimal effect on the TC results. SKC DPM
cassettes were used to prevent the collection of min-
eral dust. The tandem filter was used to correct for the
adsorption of vapor phase OC (Eatough et al., 1995;
Kirchstetter et al., 2001; Turpin et al., 1994).

DPM mass was not measured during these field
studies but since DPM consists of over 80% TC, most
DPM and EC samples were shown to have a linear
relationship.

It is important to note that the relationship between
TC and EC looks very well with the above data
when interferences were minimized. However, as
shown in Figure 1, when taking personal samples,
cigarette smoke can provide a substantial interfer-
ence. Even when taking precautions, the variability
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Figure 4. TC vs. EC for data from four different mines dur-
ing actual production (trying to avoid interferences).

between TC and EC increases at the lower concentra-
tions (<230 jLg/m?®) of TC which could be the result
of interferences or at least partially.

Some preliminary data has shown that as certain
control technologies are implemented in underground
mines, the DPM and EC relationship and even the char-
acteristic of the DPM may change (Bugarski et al.,
2003). In the Bugarski et al. 2003, 2005 studies, diesel
particulate filter (DPF) systems were shown to pref-
erentially reduce EC over OC and non carbon DPM
(e.g. a platinum (Pt)-catalyzed DPF reduced EC by
95% and OC by 80%) which could cause the relation-
ship between DPM and EC to change when these DPF
systems are implemented. The characteristics of DPM
were also shown to change (e.g. the mass of particulate
decreased but the number of nanoparticles increased
when some DPF systems were used). Even though the
DPM and EC relationship changed, EC still could be
measured accurately and followed the trend of DPM
(as DPM decreased so did the EC). The DPF system
that preferentially reduced EC over OC reduced both
substantially; therefore the concentration of DPM or
the contributions of the DPM from vehicles with these
control technologies may be low enough that the poten-
tial change in DPM and EC relationship may not be a
concern.

We do not know at this time the magnitude that the
different control technologies effects will contribute to
the future DPM and EC relationship in underground
mines. We do not know what type of control tech-
nologies will be eventually implemented in the mines,
how the characteristic of DPM could change, and at
what concentration. Future work will be needed as new
control technologies are introduced into the mines to
determine the characterization of DPM.

4 CONCLUSION

EC is selective to DPM in underground mines and
can be sampled and measured accurately. Using EC
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as a surrogate allows one to measure in all areas of
the mine. It also gives the benefit of being free of OC
sampling artifacts and makes it easier to sample in coal
mines. Under present conditions, EC represents DPM
well and is a major component. As some control tech-
nologies are implemented, such as diesel particulate
filter systems, the relationship between DPM and EC
may change, may vary between mines, and the char-
acteristics of DPM itself may change. EC can still be
measured accurately and it will still follow the trend of
DPM. Future work will be needed as new control tech-
nologies are introduced into the mines to determine the
characterization of DPM. At this time the benefits of
using EC as a surrogate outweigh the problems.
Disclaimer: Mention of a company name or prod-
uct does not constitute endorsement by the Centers
for Disease Control and Prevention. The findings and
conclusions in this report are those of the authors and
do not necessarily represent the views of the National
Institute for Occupational Safety and Health.
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