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Summary

A prototype detector using electromagnetic signals for finding trapped
miners has previously been built and tested. The signals used are generated
from transmitters carried on the miner's belt and powered by his head lamp
battery and the receiver is a human listener. This system has been found to
be very efficient for the detection and location of trapped miners in most exis-
ting mines. However, for very deep mines, they are not adequate. Unfortunately,
the signals employed (0.1 second bursts of a 1000 H, sinusoid repeated every
second) while ideally suited for a human listener, is not useable for coherent
detection schemes.

This study investigates the use of a noncoherent detector based on the pola-
riéy coincidence statistic. In this study the problem of location was not
considered, only the problem of detection. Since this two input statistic
was always used previously for two noise inputs that are essentially uncorrelated,
and since this is hardly the case with electromagnetic signals, a principle
goal of this work was to analyse the proposed detector for varjious kinds of
correlated noise inputs. Furthermore, this detector is normally used with a
random signal. While the signal cannot be presumed to be known with precision
it is at least partially known. Another principle goal was to determine
whether other statistics using delayed versions of one of the inputs is
practical. It is also necessary to determine the effect of the signal un-
certainties.

A general expression was derived for the detection parameter of the
polarity coincidnece correlator, the inputs of which are assumed to consist

of a common signal plus correlated, stationary gaussian noises. An expression
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was obtained for the expectation of the product of four hard limited (clipped)
gaussian inputs with arbitrary crosscorrelation, which is needed in order to
evaluate the detection parameter of the PCC. A program to evaluate this expression
has been implemented on the computer, evaluated and tested. This represents

the most significant contribution of this study.

A general model for the kinds of cross-correlation functions that would
result when passing two heavily correlated noise processes through identical
band-pass filters was. developed. Based on this model, the performance of the
PCC was evaluated and compared with the unclipped correlator and the sum and
square detector. The sum and square detector is a near optimum detector. For
large positive values of cross-correlation, the unclipped correlator outperforms
the sum and square detector, and so may be optimum in this range. We obhserved
that, for positive cross~correlations, while the performance of all three de-
tectors fall off substantially with an increase in the correlation coefficient,
the cost of clipping relative to the optimum increases only slightly, increasing
from 2db to 3 db as the correlation increases form O to 0.5. For negative
crosscorrelation, while the unclipped correlator performed as before, the
performance of the PCC and the sum and square detector increased as the magni~
tude of the correlation coefficient increased. As before, the cost of clipping
compared to the optimum increases slightly. The increase in performance of the

PCC is comparable for negatively correlated noise to the decrease-for positively
correlated noise.

The analysis is extended to two statistics, i.e., polarity coincidence
and differences for 0.1 second duration sinusoidal bursts of nearly known
frequency when the noise inputs are correlated. The decrease in performance
relative to uncorrelated noise inputs is quite small. Indeed, for certain

cross-correlation functions the performance increases. The increase in the



cost of clipping with the correlatioé coefficient is also quite small. For
the worst case, and perhaps the most likely case, where the cross—correlation
function is proportional te the autocorrelation, i.e., Rnln (1) = aBR(1), the
degradation can be kept low using the polarity difference siatistic. For a = 0.5,
the degradation compared to the independent case is about 1ldb. The cost relative
to the sum and square detector, for this case also increases by only by ldb.

The detection parameter is proportional te the input signal-to-noise ratio.

If we define the gain G as the ratic of the detection parameter to the input

signal~to-noise ratio, it is determined that
G = Go(l—D) v{Aw,c8) JT .

Go is the gain for ome pulse for either the standard PCC or the other statistics
considered where precise knowledge of the signal parameters are presumed.. It

is precisely this gain that has been evaluated and compared with the unclipped
detectors in the bulk of this report. D is the pulse sync error, y{Aw,ef) is
the degradation due to uncertainties in the signal such as frequency (Aw) and
phase (e6), and T is the integration time is seconds. The values of the gain
for a.single pulse are undoubtedly less than the gain of the human observer;
perhaps by a factor of 2 or more. However, the human observer cannot accumulate
information from one pulse to the next. Thus for example, after 100 seconds (or
100 pulses) the gain of the PCC statistic is improved by a factor of 10.

The pulse sync error D is always less the 5 where M is the number of computation
intervals chosen for each 1 second period. Thug, if this period is divided into
40 overlapping 0.1 second processing times, the degradation due to lack of pulse
synec is at worst 7/8 which 1s acceptable. For the statistics considered in this

s tudy, Aw

cos (mmw - €8) - e

H

Y(ow,ee) =

l_
n



where delays of m7m are presumed (i.e. polarity coincidences and differences
only) and oy is the correlation coefficient of the noise inputs. It is shown
in this report that for m = + 1, the increase in Go can be significantly larger
than the decrease in v. However, for large values of m this is not the case.
Thus, this work suggests that three statistics should be used, the standard
PCC and 2 peolarity difference statistics.

Overall, the analysis is quite encouraging and strongly suggests that

the proposed detector be implemented and tested.
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NOMENCLATURE

Symbol Definition

H Hypothesis that signal is absent

K Hypothesis that signal is present

E Expectation

D Detection parameter

052 Variance of the signal

0n2 Variance of the noise

nn, Noise inputs

N Number of observations

s Signal input

P Correlation coefficient

Q(k) E[sgn xlft) sgn xz[t) sgn xl[t+k1) sgn xz(t+kT)]

R{k) Autocorrelation of noise

Rnlnz(k] Cross-correlation between nl and n2

P(x) Probability density

P Represents correlation matrix

Cij Elements of l:’.1

o Magnitude of cross-correlation

Y Determines the combination of odd and even cross-
correlation function

a, Determines the_combinat%on of narrow band and wide band
autocorrelation function

R Input signal-to-noise ratio

C Correlator

ss Sum and square
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PCC

N,N(w)

S{w)

Polarity coincidence correlation
Noise spectrum

Integration time

Bandwidth of the signal

Test statistics

Signal Spectrum

Delay between inputs
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1.0 INTRODUCTION

1.1 General Background on the Detection of an E.ﬁ.
Source Buried in the Ground

The feasibility of finding trapped miners by detecting electro-
magnetic signals generated from transmitters carried on the miner's
belt and powered by his head lamp has been investigated for roughly
10 vears. Wait(l)* determined in 1971 that the location of a hori-
zontal loop buried in a homogeneous earth can be determined from the
horizontal and vertical magnetic field components at the earth sur-
face. The geometry of this problem is shown in Figure 1. The
horizontal magnetic component achieves a null and the vertical com-
ponent a maxima directly above the loop. Based on these ideas, a
detector was developed and a prototype built and tested.(z) While
some location errors resulted from an inhomogeneous earth and non-
horizontal earth interfaces, detection was achieved in aimost all
cases. For mines deeper than 1000 feet, of which there are few
presently, detection itself becomes a problem.

The signals employed by these systems are 0.1 second long bursts
of 1000 Hz sinusoids repeated every second. This signal is ideally
suited for the constraints of the problem which are (a)} long life (12
hours or so) for the transmitter, (b) low background noise power
levels, and (c) signals that are most easily detected in noise by

human listeners. For very deep mines, the human observer is an

*Parenthetical references placed superior to the line of the
text refer to the bibliography.

13
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14



inadequate detector and some kind of signal processing based on data
accumulated over many seconds or minutes is required. It is not clear
whether the processor should make the detection decisien or merely
preprocess and display the data in a form that a human observer, with
his remarkably adaptive brain, can use for detection.

Coherent detection techniques, which presume accurate knowledge of
the signal, are the most powerful. Unfortunately the signals used in
the present system do not lend themselves to coherent reception. For
one thing the frequency is much too high, relative to the skin depth of
the earth, to presume accurate knowledge of the signal at the earth's
surface, Also signal bursts, rather than continuous signals, complicate
coherent detection. For these reasons most of the signal processing
proposals and studies suggest very low frequency, less than 10 Hz,

(3-5) While the level of the background noise is

continuous signals.
quite high, in this low frequency range, it is highly correlated in
time and frequency and optimal coherent techniques could be very effec-
tive. There are a number of problems, however, with this approach.
Even though most of the hardware complexity would involve the receiver,
the transmitter would require precise timing references and be more ex-
pensive. Sophisticated technigques for reducing the heavy background
noise and remaining phase locked with the signal rely on stationarity
assumptions that may not always be valid. Perhaps most important, the
signals employed cannot be heard by human listeners. This means that
in the event of equipment failure, or for that matter a failure of the

stationarity assumptions, a simple back-up.-of the human observer is not

possible even for relatively shallow mines.
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It is certainly important to study the feasibility of incoherent
detection techniques using the same signals of the present prototypes.
It should be remembered that the performance of any detector which ace
cumilates or integrates data over some period of time (T) improves as
T increases, Also the integration time of a coherent detector is
limited by the uncertainty in the received sipgnal. Beyondthis limita-
tion, integration must be incoherent in any event. Given the possi-
bility of a sufficiently long decision time, say many minutes, a clever

incoherent technique can be relatively efficient.

1,2 Analog Array Detectors

Optimum receivers for detecting the presence of a random signal
common to two or more receivers with additive Gaussian noise have been
discussed by Bryn and others.(6’7) Such an analysis is carried out in
Appendix A where the noise inputs are presumed to have an arbitrary
cross correlation function (i.e., they are not independent). It is
determined in this Appendix that the optimum receiver is shown in
Figure 2 where the + sign is employed when the signals are in phase and
the - sign when they are 180° out of phase. Since the optimum filters
depend on the signal-to-noise ratio, which is unknown, one usually im-
plements the locally optimum detector (optimum as SNR =+ 0) which has

the same structure with the filters replaced by

S (w) 1
N W) [1 + p(w)1?

12
[H op (3w [ © =
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Finally, since in our case the signal spectrum is quite narrow,
the filters can be replaced with narrowband filters centered at 1,000
Hz. It is seen in Appendix A that the structure of the optimum
detector, not the performance, is in fact independent of the degree
of correlation between the noise inputs. In Appendix B, tLe output
signal-to-noise ratio for this optimum detector is evaluat:d under the
assumption of an arbitrary space/time noise correlation., [t is
assumed that the signals are either identical to both inputs or ex-

actly 180° out of phase. The output signal-to-noise ratio is given by

2T
SNR_ . = SNRinj ~ - (1-1)
(1 - F) wik,1) dk

+ =
O =3

where T is the signal duration, T the delay between inputs, and

=F

where pll(') is the time autocorrelation function of each noise in-

put and plz(-) is the correlation function between the noiée inputs.
We see that while the performance increases with signal duration,

the extent of the improvement depends, in a rather complic#ted way,

on the space/time noise correlation. It must be remembereé that this

receiver is said to be optimum under the assumption that the signal

| .
is random. However, for the locally optimum detector, the statistics

of the signal need not be known. It is worth considering how this

receiver compares with a2 coherent detector. In Appendix C| the overly
|
simplifying assumption that the cross-correlation between the noise

|
18



inputs is identically zero is made. This receiver is then compared with
a one-channel ideal envelope detector (essentially equivalent to co-
herent detection) which accumulates the results of each pulse incoher-
ently. It is found that the two-channel detector performs better
particularly if the signal frequency is not known very accurately. Of
course, if the inputs from two channels are summed prior to envelope
detection and the signal frequency is known with precision, it will
perform a little better than the non-coherent detector. This discussion
is included as part of the justification for the use of a two-channel
non-coherent detector. It must be shown, however, that when the noise

inputs are heavily correlated, the degradation is not severe.

1.3 Polarity Coincidence Correlation (PCC)

Polarity coincidence correlation is a well documented technique

(7-13)

for detecting a2 random signal imbedded in additive noise.
detector which operates on the polarity coincidence of both channels
is called a polatity coincidence correlator (PCC). The two-channel
PCC, shown in Figure 3, "clips" both inputs and compares their
pelarities, If the polarities of two hard limited incoming signals
tend to be the same, the decision that the signal is present is made.
We now make the point that for many-two-channel acoustic appli-
cations the data is hard limited and the detection is made with a

(8,10-12,15) 1 for signals 180° out

polarity coincidence correlator
of phase a polarity difference correlator. It is known that when

the inputs are uncorrelated, the cost of this data reduction is quite

19
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Figure 3, Block Diagram of Polarity Coincidence Correlator.
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small (about 0.5 db)(16’17) There are two major advantages to compen-
sate for this cost. The most obvious advantage is that the hardware
complexity, both the data acquisition and the detector implementation,
is greatly reduced. This makes the poasibility of a small hand
carried receiver quite feasible. A second advantage is that the hand
limited receiver has certain nonparametric qualities, and indeed can
outperform the so-called optimal receiver when the noise is impulsive

{17-19)

rather than gaussian, when the input samples are independent.

Nonparametric detectors have test statistics under the hypothesis
which are invariant over some class of noise process, and are there-
fore based on the assumption that the statistical properties of the

(20) For fast sampling rate, however,

noise are not completely known.
the PCC is usually aﬁalyzed using the assumption of gaussian statistics.
If the target, for independent noise, is not directly in line with the
center of the array, the delays from the target to each receiver are
sufficiently different to enable the location (bearing angle) of the
target to be determined. Unfortunately, for electromagnetie signals
with receivers reasonably close, the noise inputs at each receiver are
heavily correlated and signal delays may be too small to measure,
While the small delays mean that location by some kind of triangula-
tion may be difficult, they have a benefit in that the signals at each
receiver are nearly in phase if the horizontal coordinates of the
transmitter is in the vicinity of those of the receivers.

If a delay of one half period (.5 m sec) is introduced in one
channel, an equivalent detector determines polarity differences.

Other statistics which compare coincidence of one pulse with those of

21
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another may be more desirable. In fact a receiver that can implement
many different statistics should be very useful. A receiver which has
this flexibility and which overcomes the lack of pulse synchronization
is shown in Figure 4. Each microprocessor, operating in parallel,
assumes a particular pulse sync and accumulates data (1200 binary
pulses per input) over 0.1 seconds. During much of the remzining 0.9
seconds, before the next pulse, a series of statistics are computed.
These include polarity coincidences between simultaneous samples, and
samples displaced by multiples of 1 m sec (or 1000 Hz cycles). Also,
polarity differences between samples displaced by odd multiples of 0.5
ml sec are computed. Other statistics such as polarity coincidences
with the data from a previously stored pulse can also be computed.
These statistics can be accumlated and after some normalization dis-
played as a line on a CRT. The accumulation continues until either a
target is visually observed, by a bright spot or line on the display,
or the computations are stopped.

It is conceivable that, after detection, the inputs, perhaps
sampled at a much faster rate, could be used for location via triangu-
lation. In this event it should be noticed that the best statistic

and pulse synchronization have been determined by the brightest spot.

1.4 Summary of Analysis

The detection parameter for weak input signals and noise is dis-

cussed in Chapter 2 and givemn by (D-13) in Appendix D as,

23
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where

2 2 R {0)
c /cn + pH nln2

2 p
H cnz

= and
2 2
1+ 0 /cn

Px
represent the correlation coefficient under the alternative and hypothesis

respectively, R (k) is the noise cross-correlation function, csz/o'n2

nh,

is the input signal-to-noise ratio, N refers to the number of sample ac-

cumulated by the test static, and

QH(k) = Ej {Sgn xl(t) Sgn x,(t} Sgn xl(t+ktj Sgn xz(t+k1)} . (1-4)

Equation (1-3) is asymptotically valid as the input signal-to-noise ratio
approaches zero. It canbe extended to include finite values of oszfcnz
provided the signal is gaussian as well as the noise. For non-gaussian
signals, cnly the asymptotic evaluation is possible.

The technique for evaluating the expected value of the product of
four hard limited functions (Equation 1-4) is discussed in Chapter 2
and carried out in Appendix D. This evaluation is one of the main
contributions of this research, without which the only possible way of
evaluating the PCC would have been extensive simulation. The solution

of this problem is carried out by a computer algorithm. The memory

required, computation time, and stability considerations are evaluated.
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In order to test the programs, the PCC is analyzed in Chapter 3
for a first order Markov signal common to two dependent noise inputs,
whose cross-correlation is proportional to the autocorrelation,

A general model of cross-correlation functions for narrow band
and wide band noise process is developed in Chapter 4. Using this
model, the PCC is evaluated for a wide variety of cross-correlation
shapes in Chapter 5. There is shown to be a significant difference
in the performance for even or odd cross-correlation functions.

The results are extended in Chapter 6 in a number of important
ways, The signal is assumed to be an electromagnetic burst. Signals
of this sort have been considered for the detection of trapped miners.
The exact knowledge of this frequency is also not available because of
variations in the transmitter, The frequency, in a two-channel
receiver, can be assumed to be the same, but because of the different
locations of the receivers, the amplitude and phase of the signals can
be different in both channels. These uncertainties in the signal are
the primary reason for considering a noncoherent PCC rather than a
coherent receiver. Nevertheless, because the frequency is nearly
known.other statistics are possible., For example, by introducing a
delay in one channel which causes a 180° phase shift and employing a
polarity difference correlator, it is possible to get improved per-
formance. The performance depends not only on the amplitudes and phase
difference in the channels and more critically on the frequency un-

certainty, but on the precise shape of the cross-correlation function.

25



In order to carry out such an analysis, the kinds of cross-
correlation functions that would result when passing two heavily
correlated noise processes through identical band pass filters are
used. The PCC is first evaluated for identical input signals for a
wide range of cross-correlation shapes, and is comparedwith the un-
clipped correlator and sum and square detectors. The sum and square
detector is locally optimum when the inputs are independent. For
dependent inputs, however, the unclipped correlator can, under certain
conditions, outperform the sum and square detector. Next the cost due
to differences in the amplitudes and phase of the signal as well as
the uncertainty in both the frequency and pulse locations of the signal
is analyzed, Finally, other statistics based on the fact that the
frequency is nearly known are evaluated.

The main results of this analysis are:

1. The cost of clipping (i.e., the comparison between the PCC
and analog devices) is quite modest even for significant
amounts of cross correlation,

2. The degradation in performance due to the correlation between
the inputs is not severe, particularly if one employs two
polarity difference statistics in addition to polarity coin-
cidence correlation. Statistics other than these three do
not seem worthwhile.

3. The degradation in performance due to signal uncertainies can

be made quite small.

26



These results convince the author that the use of the proposed
modified PCC is quite feasible for the detection of the electro-

magnetic signals used by trapped miners.

27



2.0 EVALUATION OF THE OUTPUT SNR FOR A PCC

A detector is often evaluated by computing the output signal-to-

noise ratio,

E.(S) -~ E,(8)
D = K H

(2-1)

VarK

where 5 is the test statistic, H refers to the hypothesis of noise only
and K refers to the alternative of an additive signal common to both
inputs. If one is only interested in a small input signal-to-noise
ratio, this equation can be greatly simplified by replacing the variance
of the test statistic under the alternative with the variance under the
hypothesis. Assuming independent noise inputs, independent samples, and
small signal power, the output signal-to-noise ratio becomes for

gaussian statistics(s’g)

(2-2)

where Usz/on2 is the input signal-to-noise ratio and N refers to the num-
ber of samples accumulated by the test statistics. For the unclipped
correlator, the output signal-to-noise ration is (oszfonz . JﬁT:(S’g) and
the cost of clipping is n/2 or 2 db.

If one wishes to change some of the assumptions, particularly that
of independent noise inputs and independent samples, it is necessary to

examine the test statistic more closely.
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S =
k

LI e -

. sgn X, (t+k1) sgn x,(t+kT), (2-3)
where sgn x{(t) = 1 if x{t) > 0 and -1 if x(t) < 0, T is the sampling
interval, and where xl(t) and ;2(t] refer to the two inputs. From Van
vieck®!) is is known that E [sgn x,(t) sgn x,(0)] = (2/m) sin”!p where
p is the correlation coefficient between two inputs. If Py and Py
represent the correlation coefficient under the hypothesis H and alter-
native K respectively, the output signal to noise ratio from (D-13) in

Appendix D is

2/n N [s:i.n'1 Pg - sin”? Py)

pcc N _
p-{z/msin™ p 32+ 2 T [1-IN][Q(K) -((2/msint p?])/?
k=1
(2-4)
where
QK(k) = EK [sgn xl(t) Sgn xz(t) Sgn xl(t+kT) sgn xz(t+kT)] (2-5)

Since xi(t) and xi(t+k1) become independent as k increases, it follows

that

Q (k) =+ Eg [sgn x;(t) sgn x,(t)] Ep [sgn x,(t+kT) sgn x,(t+k7)]

K=o

= [2/m) sin™! o) (2-6)

Hence the terms in the summation of equation 4 are decreasing to zero
and since this summation can be truncated, the detection index

ultimately depends on VN.
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1f the common noise inputs are assumed to be independent, pH=0.
For small signal power, the variance is evaluated under the assumption

of the hypothesis and
2/ N sin”? [o,]
Dpcc - N

[1s2 2 (-W/N) Q' (012 (2-7)

[}

where Q'H(k) EH[sgn xl(t) Sgn 51(t+k1)] EH[sgn xz(t) sgn xz(t-kT)]

(& sin”! o 001%

052/052 - R_[kt]
s p = ,

1+052/cn2 " o f

where Py =

and Rn(kT) is the autocorrelation of the noise.
For independent samples [pn(k)=0], equation (2-7) reduces to
equation (2-2). Equation (2-7) has been evaluated for dependent

(7

samples, where the cost of clipping has been found to decrease with
an increase in sampling speed.
For either dependent noise inputs or large signal power, we must

compute Q(k) which involves 16 integrals.

2.1 The Computation of Q(k)

The problem is to compute E{r(x)} where

n o

r{x) = sgn x; (t;)

i=1
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and x is zero mean gaussian or
4 4

pay = @07 et 1V e o) T p g xx) -8
i=j j=1 P 1)

The coefficients qij are the elements of P'l, and both P and 1:"1 are

symmetric [qij = q,.]. Since r(x) is either +1 or -1 depending on

ji
which of the 16 "orthants" x lies in, it follows that

E{r(x)}= )y JJJJ p(x)dx - ] JJJJ p(x}dx . (2-9)

8 orthants 8 orthants

where T = +] where r = .1

By a simple change of variables, each of the 16 integrals can be written

as

L - ]

IA JJJJ wWi{vidv , (2-10)

o000
where W(-) is identical top(-) with appropriate changes in the signs
of the qij for i#j, and v is a dummy variable.
From (E-19) of Appendix E, equation (2-10) can be written as:
o e w 1 j i-k

T L I I I I ¥ (i,j,r.k,s,m (2-11)
i=0 j=0 r=p k=0 s=0 m=0

-2

I = (2m) " %[det p]"1/? a;

wherTe
JAi+r-20 ko T Se mé'sg’k"mr(i+1)r(j+k+1)r(r+s+m+l)r(i+j+r-k-s~m+1)
Y= 12 "34 23 713 T24714 2 2 7 2 2
{(j-s)! (i-k-m}! k! s! m! 7!
' (2-12)
and Cij 2 x qij/qll’ where the sign depends on which of the 16 orthants

of the integral we are evaluating.
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Observation reveals the Symmetry in Equation (2-9), which reduces the
16 integrals to 8. It is clear by examining equation (2-12), that
the ¢ (i,j,r,k,s,m) terms for each of these 8 integrals differ only in

their signs. Thus we can write
s @ = = i j i-k

1o LT t(Lg,n,ks,my

Elr(x)] = 2[(2m) *[der P} /%
i=0 j=0 r=0 k=0 s=0 m=0

11
(2-13)

where Y' corresponds to the ¢ where all the Cij are the normalized

negative values of I—"1 denoted by Eij and Y can be determined to be
y=[1-(-1) 1-k-m+j-s+r‘(_1)m+s+r+(_1) i-k+j_(_1)k+j+(_1)1-m+s+r

s (DS iy (2-14)
Using the fact that (-.‘l)'k = (-1)+k, this can be simplified to

Y ={O if either i, (x + s + 1), or {k + j) is even,

Bif i, m+ s+ r, and k + j are all odd. (2-15)

Changing variables (x ¢ m+ s +randy 4 k + j) and recognizing that

T(n ; 13 = (n 5 1)! for n an odd integer, equation (2-13) becomes

o ® ™ e i+j j res+ijey
E{r()} = v 2ldet P12 2 3 1 3 5 % :z-

11 520 §=0 1=0 y=j s=0 xer+s
odd odd odd
-ﬂ(i.j,?s}’,S,x) B(i,jgl‘,)’,s;x), (2'16)
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where

zi+j+r(i51)!(z£1)!(lejl{i—x-y+§j+2r-l)!
(3-s)I(i+j+s+r-x-y) ! (y-j) Is!(x-5-1) IT!

a(i)j'rly,s’x) =

=y=] zX=8«T zj-5 mi+jes+Tés-X-y .
c Coa 614 (2-17)

;g 2T =S
and B(1,],71,¥,5,%) 127 Cz4 G353 €15
Computing E{r(g)} by equation (2-16) is computationally simpler and
requires significantly less CPU time than computing each integral I

via equation (2-11)}.

2.2 Stability Considerations and CPU Time Requirement
2.2,1 Truncation and Stability

The infinite summations of equation (2-16) have to be truncated
to a finite interval T, forcing a compromise between CPU time and
truncation error. The truncation error is more severe the more the in-
puts are correlated. For a strong, additive, Markov signal that is
common to two independent, white noise inputs, the relative truncation
error of equation (2-16) is plotted in Figure 5 for k=1 (the worst case)
and an input signal-to-noise ration of 0.5 as a function of the trunca-
tion T. The overall error in computing the detection parameter of
equation (2-4) is considerably less. Since the i summation in equation
(2-16) is evaluated only for odd values, it is not surprising that
significant decreases in truncation error occur for odd values of T.
For T=5, the relative erroi for k=1 is about 1%, the overall error in

the evaluation of equation (2-4) is an order of magnitude better.
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There is no need to consider a truncation T greater than 9. In fact, the
observations reveal that for most cases, equation (2-16) will converge
very fast. However, for small signal-to-noise ratios and heavily corre-
lated noise inputs of the order of 0.6 and more, and for small values of
k (1 Sk £ 3), equation (2-16) does not converge as the truncation is
increased. In this unstable region (which is evident from the eigen
values of the P-1 matrix and hence can be isolated) computation approxi-

mations may or may not be possible.

The computations car be made stable with rapid convergence if the
diagonal elements of the P matrix are all increased sufficiently. If
the results of this computation are compared with the true results for
those values where convergence is no problem, approximation can often be
made. Such a comparison is shown in Figure 6 for o = 0.6, where the
approximations for the three points where convergence did not take place
are self evident.

While there may well be problems for which our solution fails be-
cause of lack of convergence, we anticipate that for a wide class of

problems convergence will take place or can be approximated.

2.2.2 CPU Time Requirement

The CPU time required to evaluate Equation (2-16) is plotted in
Figure 7 for various truncation values, Since this time is essentially
independent of k, this plot (appropriately scaled) also represents the
overall CPU time required to compute the detection parameter Dpcc' We

observe 15-fold an increase in CPU time when T was increased from 5 to 9.
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The evaluation of the detection parameter of equation (2-4) re-
quires the computation of Q(k) N times. Therefore, if it takes n
seconds to compute Q(k) via equation (2-16), the total CPU time will be
nN seconds. This time can be greatly reduced, however, by using the
following two procedures.

For different values of k, the only part of equation (2-16) that
changes is the B(i,j,r,v,s,x) terms. Therefore, we can calculate all
of the o(i,3j,r,y,s5,X) terms and store them in a one-dimensional array.
The time to compure Q(k) is greatly reduced by this time. This proce-

dure does increase the core storage requirement as shown in Table 1.

TABLE 1
Truncation T 5 7 9 11
Core Storage Required for
the o terms (words) 1098 5120 17,375 47,880

For the Markov process, and typically in general, the correlation
between input samples decreases as k increases, and, for k large enough,
Q(k) approaches a limit, Therefore, PCU time can be further reduced by
finding k=I in equation (2-4) beyond which Q(k) remains nearly

[(2/m sin“1 pk]. Thus the summation of equation (2-4) is partitioned

into:
I 1,2 N a1
I (-k/N)[Q(k)-{(2/m sin pK] + I (1-k/NM)[(2/m) sin Py
k=1 k=i+1
L1 2 L -1 .2
- [(2/m) sin”" p )" = kzl (1-k/N) (Q(K) - [(2/m) sin © p)7)

(2-18)
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and we need to compute Q(k) only I times.

For most cases, the value of T = 30 in equation (2-18) was found
to be adequate and the total CPU time to compute the detection para-
meter in equation (2-4) by using T = 5 on the DEC-10 computer, in
Fortran-10 language, was 30 seconds. However, if the input data in any
channel is to be shifted, for more accurate results, the I in equation

{2-18) should be increased by that amount.
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3.0 PERFORMANCE OF PCC AND COMPARISONS WITH

UNCLIPPED DETECTOR

3.1 Large Signals with Two Independent White
Noise Inputs
The output signal-to-noise ratio of the PCC has been evaluated
under the assumption of white independent noise and a common Markov
signal. The correlation coefficients between signal samples kt seconds

k/4.

apart are assumed to be e Since a gaussian Markov process has an

autocorrelation function of the form 052 e'Z“BlT|

, where B is the signal
bandwidth, this corresponds to a sampling rate of 8nB. This is suf-
ficiently fast in that the output signal-to-noise ratio cannot be in-
creased by faster sampling.(loJ The covariance matrix P used to evaluate

equation (2-16) is

B Py pKe'k/4 pKe'kM-
oy 1 pKe'k/ 4 oKE'k/ 4
p= °x2 ;:Ke'k/4 oKe'k/4 1 Py (3-1)
.pKe~k/4 pKe-k/4 by 1 |
2
where sz = 052 + an and Pk © 205 3
9% * 9%

The detection parameter Dpcc of equation (2-4), or output signal-
to-noise ratie, is ploted in Figure 8 as a function of the input

signal-to-noise ratio. Shown in the same figure is the detection
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parameter based on the erroneous assumption of equation (2-7) or small
input signal-to-noise ratios, as well as the performance for the un-

clipped correlator, which is

N R

D = — (3-2)
/Var(s)
2 N k, . _-k/2
where Var(8) = 142R"[1 + 2 Z (1 - ﬁa T e ] + 2R, (3-3)
k=1

and R = csz/cnz input signal-to-noise ratio.

It can be seen that the assumption of small input signal-to-noise
ratios appears valid over a wide range. Actually the error in the
variance calculation is compensating the error in the numerator,

All three curves are continued in Figure 9 for large input signal-
to-noise ratios. The difference between the PCC performance and the corre-
lator, or the cost of clipping, is plotted in decibels in Figure 10.

For large input signal-to-noise ratios the cost of clipping decreases.
3.2 Small Signals with Correlated Noise Inputs

3.2.1 Inputs Positively Correlated

In this example, the signal is assumed to be weak so that the
variance of the test statistic c¢an be evaluated under the hypothesis.

Thus, equation (2-4) and (2-5) are closely approximated by
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2/m VN (sin'1 - sin” OHJ

4

DpCC

. _
[-{2/m sinh ¥ w2 3 (- ,%){Q(k)-((zm sin”? p,) 41?2
k=1
(3-4)
where Q(k) = E, {sgn ny(t) sgn n,(t) sgn n, (t+k7) sgn nz(t+k'r}} . (3-5)

We will assume that Py = E[nl(‘!:)nz('c)]/fjn2 = a where o ranges from 0 to

1. More specifically we will assume that the noise inputs are rapidily

varying Markov processes [Rn(k'r) = cnze-kM] and the crosscorrelation

function between them is R (k1) = cnzae-kM. The analysis in no way

™t
depends on these assumptions, rather they are made as an example. Pk

2

in egquation (3-4) becomes (cszfcrn +a) /(1 + csz/onz).

Using Taylor's expansion it is seen that sin'lpK = sin”l o

+ /La o] /0 . Thus equation (3-4) becomes

fled — 2, 2
2/ T:E ¥ N 05 /Un

N
- 2/msinlwd2r - & Quo-(2/msinTlw )
kel

pec 1/2

(3-6)
The covariance matrix for this example is
8 - - =
1 o ] k/4 oe k/4
o 1 me-k/4 e‘k/4
P = on2 (3-7)
e k/4 (:ute"k/4 1 o
-k/4
] ae-k/4 e o 1 i
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The detection parameter Dpcc’ or output signal-to-noise ratio,
is plotted in Figure 1l as a function of the amount of positive cross-
correlation. Shown in the same figure are the performance of the un-
clipped correlator and the sum and square detector, whose detection para-
meters can be derived from equation (D-20) and equation (D-25) of
Appendix D, respectively as follows:

N o 2/0 2
D = s '“n (5-8)

// 2 N -20.k
(1+a™) [1+2 ]

I o(-k/N) e O

k=1
and

v2N 052/0n2
Dss = N ¥2aok ’ (3-9)
(1+a) vi+2 I (1-k/N) e
k=1

where a can be positive or negative.

c correlator

sum and square

5S
As expected, the performance of all three detectors fall off as
the noise correlation increases. The cost of clipping in decibels is
shown in Figure 12. It can be observed that while the performance of
both the PCC and the sum and square detector fall off sharply with an
increase in correlation, the cost of clipping does not change sub-
stantially, increasing from 2db to 3db for the assumed sampling rate
and o=+0.5. The performance of the unclipped correlator does not fall
off as sharply and, for a sufficiently high correlation coefficient, it

outperforms the "sum and square' detector.
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3.2.2 Inputs Negatively Correlated

Because the results are quite different for negative cross-
correlations, the evaluations of all three detectors is discussed
separately.

All three detection parameter curves are repeated in Figure 13
for negative a. The cost of clipping is shown in Figure 14. In this
case the performance of the PCC and the 'sum and square' detectors in-
crease by Toughly the same amount (the cost of clipping is between 2db
and 3db for o=-0.5). The increase in performance is essentially ther
same amount for negatively correlated noise as the decrease for posi-
tively correlated noise. The unclipped correlator performs the same
for negative as for positive cross correlations and is, therefore, less

attractive for negatively correlated noise inputs.
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4.0 MODELING OF TWO CORRELATED NOISE PROCESSES

4.1 Narrow Band Noise Processes

Consider two correlated noise processes ni(t) that have been passed

through identical narrow band filters whose transfer functions are both

H(E).

A~

n, (t) ———— H(f) . (1)

The output spectra are given by
2 .
Sﬁ (f) = sn (f) ] H(f)l L] 1=1,2
i i
and
2 ‘

Se o (£) =S (£) | H(D]| © , (4-1)

fi)f, nif2
where S, (f) and S, (f) are real and even.

fi, i,

If it is assumed that they are constant in the vicinity of the filter,

then
g, (0 = Sp (0 =k [ HD| 2, (4-2)

and
R(t) = k J | H(D) | 2 coswt df. (4-3)
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Substituting the low pass equivalent
H(f) = 1/2 HLP(f - £) + 1/2 HLp(f + £) (4-4)

Equation (4-3) can be changed to

ke

2

[+ +]
R(t) = X J |HLP(f)]2 cos 2nf0t cos 2nft df

Rip(t) cos 2nf . (4-5)

For a first order low equivalent

At

R(t) = R(©) - cos Zﬂfot . (4-6)

Sﬁ f (f) does not have to be real and even but its inverse must be
172

real., Let

sﬁlﬁz(f} = Seven(f) + 3 5448 (4-7)

where Seven(f)’ Sodd(f) are both real (and denoted Se(t) and So(f)
for convenience). The inverse transform of Se(f) is real and even and

the inverse transform of j So(f) is real and odd.

Rhlnz(t) = Re(t) + R (t) (4-8)

By definition

IH(E) |2 Se 4 (£) (coswt - j sinwt) df,
12
(4-9)

R (1) =
o0,

§—1

-

Substituting (4-7) in (4-9)
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(-4

[
Rnlnz(t) = J |H(f)|2 S, (f) coswt df J [H(f)[2 §,(f) sinwt df .

-0

Using the low passequivalents and assuming that se(f) and So(f)

are nearly constant in the vicinity of fo and "fo’ one obtains

-4

R (t) aj IHLp(f)I2 sinwt cos 2mf t df

-l
oo

+ b J |HLP(f)|2 sinwt cos 2wf t df

-0

n

[aR (1) + BR(t)] cos 2mf t (4-10)

where

ﬁ(t) = J_]HLp(f)lz sinwt df . (4-11)

Equation (4-11) in general has no closed form solution, In order

to simplify the model, we assume instead,
R(t) = sgn(t) (1-e'3|t|) R p(t) (4-12)

In fact the inverse of the above expression is not equavalent to an
imaginary constant in the vicinity of fo. The shape is nontheless
similar to 2 numerical computation of equation (4-11). Therefore, the

simplified model becomes.

Ry (0 = el G G- Bl L yirao L e

Thus o is related to the magnitude of the correlation and v (0 <y <1

determines the proportion of even and odd terms. When vy = 1, R,n n (k)
172

is proportional to R(k) and the proportionality constant becomes the
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correlation coefficient., When v = 0, Rn1n2(k) is an odd function whose
shape has similar characteristics to R(k). The magnitude of the cross-
correlation is proportional to o, but o can no longer be considered the
cross-correlation coefficient. For y between 0 and 1, a wide variety of
shapes are possible, all of which have characteristics resembling R(k).
In Figure 15 the auto correlation R(k) has been plotted, which is
an even function, In Figure 16 (a,b,c), o is set equal to 1 and v is
set equal to 0, 0.5, 1 fespectively. The resulting curves give some idea
of the possible shapes. For these curve B was set equal to 4, fo = 1000

Hz, the filter bandwidth = 500 Hz, and the sampling rate 12000 Hz. We

shall see that a sampling rate of 12xfo is quite reasonable.

4.2 Wide Band Noise Processes

The autocorrelation function in equation (4-6) is extended from
the low-pass Markov process to a combination of a low-pass Markov process

and a band-pass process by defining

R(K) = age” '%l . (l-ao)e*l

!

cos{m/6X) . (4-14)

oo}

The parameter a. is allowed to vary from 0 to 1 and for ao=0 equation

0
(4-14) is the same as equation (4-6) and the cross-correlation model in
equation (4-13) is the narrow band noise process, For vy and 2, between
0 and 1, a wide variety of shapes are possible, all of which have char-

actistics resembling R(k).

In figures 16(d,e,f,g,h,i), o is set to 1 and a, is set to (0.5,

0
1} while v is set to equal 0, 1/2, and 1. In general the resulting 6
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curves and the 4 curves in the preceding section give some idea of the

shapes possible. In Figure 16(c¢,f,i), where v = 1 we see the effect a,
has on the autocorrelation R(k), since for a=y=1, both R(k) and Rnlnz(k)
are the same. In Figures 16(a,d,g), where +v= 0, the cross-correlation

is constrained to be an odd function. In Figures 16(b,e,h), where

v = 1/2, the cross-correlation is nearly one-sided.
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5.0 PERFORMANCE COMPARISON OF PCC WITH ANALOG DETECTORS

FOR A WIDE RANGE OF CROSS-CORRELATION SHAPES

5.1 Positive Cross-correlation

The performance of the PCC is evaluated based on the developed
general model for cross-correlation functions in equation (4-13) with
R{k) equation (4-14) or the the shapes in Figure 16(a) through Figure
16(i), and for commen input signals. The covariance matrix to calcu-

late Q(k) in eguation (2-4) is given by

[R(0) ROE R(X) Rin (-]
12
ROE R(0) Rnlnz(k) R(k)
P(K) = (5-1)
R(k) R . (K RO ROE
172
R, o (-K)  R(K) ROE R(0)
L 12 |

where ROE = R (0)
i e
The detection parameter Dpcc’ or output signal-to-noise ratio is
plotted in Figure 17(a) throhgh Figure 25(a) for three values of
¥y(0, 0.5, 1), and three values of ao(O, 0.5, 1), and for positive a.
Shown in the same figures are the performance of the unclipped correlator
and sum and square detector. For odd cross-correlation functions (y = 0),

the performance of all detectors are nearly independent of a or the

{k). For even cross-correlation functions (y = 1),

magnitude of R
R

l'ﬂ
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the performance of the detectors decrease for an increase in o. The
correlator outperforms the PCC and sum and square detectors for a suf-
ficiently large 0. The decrease in performance of the PCC is about
-2db for o = 0.5.

The cost of clipping compared to the correlator and sum and square
detectors are plotted in Figure 17(b) through Figure 25(b), which remains
almost constant compared to the correlator but drops off with compared
to sum and square detector for y=0, For v = 1, on the other hand, the
cost compared to the sum and square detector increases from 2db to 3db
with moderately correlated inputs {(a < 0.5) and compared to the corre-
lator detector increases from 1db to above 3db. The sum and square
detector is locally optimun when the inputs are independent. For depen-
dent inputs, however, the unclipped correlator can under certain condi-

tions, outperform the sum and square detector.

5.2 Negative Cross-correlation

Since the performance of all three detectors is quite different,
in most cases, for negative a, this case has been considered separately.

All three détection parameter curves are repeated in Figure 26(a)
through Figure 34(a) for vy = 0, 0.5, 1 respectively and for negative
cross-correlation. It can be observed that for vy = 0 the performance
remains the same as for a positive a. The cost of clipping remains con-
stant for Y = 0.5, but increases mostly for vy = 1 and for higher corre-
lation. The cost comparison curves for negative correlation are shown

in Figure 26(b) through Figure 34(b).
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For even cross-correlation functions (y = 1), the performance of
the PCC decreases for positive values of a(-2db for ¢ = +0.5) and in-
creases a like amount for negative value of a(+2db for o = -0.5). For
cross-correlation fumction even and odd components (y = 0.5) the per-
formance lies somewhere in between the even and odd case.

We can see that the shape of the autocorrelation R(k), as
determined by a, has a modest affect on the performance of the PCC
that is nearly independent of <Yy. The shape of the cross-correlation

Rn n (k), as determined by Yy on the other hand, has a significant effect,
172 :
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6.0 PCC DETECTION OF SINUSOIDAL BURSTS WITH

UNCERTAINTIES IN SIGNAL PARAMETERS

6.1 Sampling Speed

In Figure 35, the detection parameter of the PCC is evaluated for
sampling speeds in the range of 1200 samples/sec to 24000 samples/sec.
While this curve is for the vy = 1, o = +0.5 case, it does not vary much
with these parameters, The band width of the noise is of the order of
2,000 Hz but the nonlinearity used to obtain polarities spreads the
spectrum further. For this reason we observe a substantial improvement
in performance as the sampling rate is increased to about 8000 samples/
sec. But after that, the improvement slows down and increasing the
sampling rate from 12000 to 24000 fesults in a gain of 6n1y 0.4db. There-

fore, sampling rates of 12000 samples/sec are assumed throughout.

6.2 Detection of Sinusoidal Bursts

Electromagnetic signals consisting of sinusoidal bursts have been
considered for the detection of trapped miners. The signal is assumed
to be 0.1 second long bursts of a 1000 Hz sinusoid repeated every second.
For this non-gaussian signal the asymptotic analysis of PCC is carried
out under various assumptions, as the input signal-to-noise ratio

decreases to zero.
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6.2.1 Polarity Difference Statistics

Assuming that the signal is a sinusoidal burst of nearly known
frequency, it is possible for the PCC detector to perform other statis-
tics in addition to polarity éoincidences. By adding a suitable delay
in one channel the signal will be nearly 180° out of phase rather than
in phase. For these signals, computing polarity differences is more
appropriate. Computing polarity differences when the signals are out
of phase and the noise inputs have a positive correlation is identical
to computing polarity coincidence when the signals are in phase and the
noise inputs have a negative correlation. Therefore, when the signals
are out of phase polarity difference correlation can be evaluated using
equation (2-4) by changing the sign of Py Using this technique, the
polarity coincidence statistic is compared with polarity differences in
Figure 36 (a,b,c) for y = 0, 0.5, 1. The shift in either of channels
is considered or in other words a shift of 3180°. From Figure 36(a),
{y = 0) we can see that by adding a suitable delay an improvement can be
achieved for both negative and positive cross-correlations. But for
¥ = 0.5 and vy = 1 in Figure 36 (b,c) we can see that possible improve-
ment is for positive cross-correlation only with -180° shift. In general,
we can say that for negative cross-correlation, polarity coincidences
will outperform polarity differences whereas for positive cross-
correlation, the opposite is true. To perform this analysis, it has to
be kept in mind that Py in equation (2-4) and ROE in matrix (5-1) have

to be redefined.
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It is of course possible to consider other phase shifts such as
mm, where for m even polarity coincidences are performed and for m odd
polarity differences are performed. For the case Y = 1, and a =.+0.5
the statistic Dpcc is plotted for various values of m in Figure 37. It
seems that the improvement of 1.3db for m = 1 can be increased somewhat
with 2 larger m. However this analysis does not take into consideration

the possible error in the frequency.
6.2.2 Cost of Uncertainties in Signal Parameters

Let the difference or delay between the beginning of the 0.1 second
pulse and the start of the processing be denoted by D. That is, D=0
corresponds to perfect synchronization and D = 1 corresponds to missing

the pulse completely. The numerator of equation (2-4} can be written as,
.1 . =1 =1
(1 - D) sin (DK) + sin “p, - sin Tpy
. =1 . -1
= (1 -« D) [sin py - sin pH] , {(6-1)
where

Sl(t)Sz(t) * Py

2
Py = ﬁ °n g (6-2)

f/slz(t) + onz ¢/522(t) + onz
L g ¢

n

and Sl(t), sz(t) are the signals in the two channels., If the entire 1
second interval (or time between pulses) is divided into M overlapping

0.1 second processing times, then it follows that D < % . Thus if
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M = 40, in the worst case the degradation is only 0,58db.

Let

$,(t) = A(l + AA) Sin {(w+A Wt + 8}

Sz(t) A(l + AA + eA) Sin {(w + Aw)(t-T) + 6 + €6} (6-3)

where AA, Aw, and & are unknown but the same for both channels and €A,

£8 are unknown differences in Sl[t) and Sz(t). It is assumed that

T =4%? where m = 0,1,2, ... which means that we are going to consider
polarity coincidences and differences only. In computation of equation
{(6-2), to a second order approximation, gA has almost no effect and we

get,

Aw
_ oszfonz « Cos (mm - e8) + Py

p »
K o 2/0 ¢ + 1
s''n

where 052 is the average signal power in the two channels., It is seen
that €6 will not significantly degrade the performance unless it is large.

The results of Figure 37 are extended in Figure 38 for €6 = 0 and
Af = 0, + 5%, + 10% of the assumed frequency. This figure shows the
degradation caused by an error in the frequency. We observe that a real
improvement is achieved for m = 1, but further shifts do not help unless
the frequency is known with some precision.

We conclude that three statistics should be performed in addition
to the polarity coincidence; polarity difference with a 180° delay in

each channel should also be performed.
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On combining Equations 6-1, 6é-4, and 2-4 we obtain

2
7 VN (1-D) [sin lpk - sin ! Py

Dpcc
v/ N N i 2 . -1 .2
1-(sin™p)" + 25 (- g) Q) - (3 sin P ] (6-5)
og2
T 7 cos(mm 29'- €6) + p
} 1 W H
where pk= 3
l1+o0
_5
o 2
n

where M is the number

4 [¥

and where D(the loss in pulse sync) is bounded by D <
of processing intervals.

For very small input signal-to-noise ratios, the denominator can be
evaluated under the Hypothesis of noise only, and the numerator can be approxi-

mated by the 1%% two terms of a Taylor's expansion

gg2
- agy +to - 2
sin . 1 i & gin l[pH + % (8 - pu)]
1+ 0.2 G 2 g
8 n
g
n
! a-PH 032
= sin DH -+
"l-pl‘l an

Incorporating these changes, and recognizing that N = 1,200 T{(seconds) for

our presumed sampling rate, we obtain 2
g

Aw . .8
[cos.(m'n - £6) - pH]_ v

Doee © % v1,200T (1-D) (6-6)
- eyt ‘/1 (= eintp )2 + z-N (1-x (0)-(2 sin”? )2]
T Ay s Py kil - ) Qg(0=Gosin Toy
S8ince D < 5 , the gain G (defined as Dpcc/cszfonz) is therefore bounded by
M
G> G [cos(mrr Lo _ 8) - 1-2 y | /T
o e S T, (6-7)
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where p
2 1-"H 34.64
Gom= T 1+Pg (6-%)
" 2 . -1 2 K 1 2 -1 2
1-( = sin pH) + zkil(l - N)[QH(k)-(ﬂ sin DH) ]

and the bracketed term represents the cost due to signal uncertainties.

The value of Go (between 10 and 20) is probably less than the gain of the
human observer; perhaps by a factor of 2 or so. However, the human observer
cannot accumulate information from oneipulse to the next (i.e. no YT term.
Thus, for example, after 100 seconds (or 100 pulses), the gain of the PCC is

improved by a factor of 10.
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6.2,3 Use of Microprocessors in Parallel

We can effectively process the output of the PCC using micro-
processor technology. For 40 overlapping intervals to be processed and
assuming 0.1 seconds to read in the data and initial processing, and an
additional 0.1 second to complete all three statistics,* we can process
the data using only 8 microprocessors in parallel. The idea is shown
in Figure 39(a) as the timing diagram of 8 microprocessors,(25"27) and
the block diagram of an array processor in Figure 39(b). In the timing
diagram the second microprocessor will start processing after 1/40
second and by the time the eighth microprocessor receives data, the
first microprocessor has finished. Therefore, one processing cycle is
complete after 0.2 seconds. Assuming 12000 samples/sec, only 300 words
{each word corresponding to 8 quantized samples) are processed by an

individual microprocessor which is quite reasonable for any available

microprocessor in the market.

*The actual time depends on the microprocessor choice and the
software package.
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7.0 CONCLUSIONS AND SUGGESTIONS FOR FUTURE RESEARCH

7.1 Conclusions

A general expression was derived from the detection parameter
of the polarity coincidence correlator, the inputs of which are assumed
to consist of a common signal plus correlated, stationary gaussian
noises. An expression was obtained for the expectation of the product
of four hard limited (clipped) gaussian inputs with arbitrary cross-
correlation, which is needed in order to evaluate the detection para-
meter of the PCC. A program to evaluate this expression has been
impiemented on the computer, evaluated and tested. This represents
the most significant contribution of this study.

A general model for the kinds of cross-correlation functions that
would result when passing two heavily correlated noise processes through
identical band-pass filters were developed. The model was extended from
band-pass to a combination of band-pass and low-pass processes. Based
on this model, the performance of the PCC was evaluated and compared
with the unclipped correlator and the sum‘and square detector. The sum
and square detector is optimum for independent noise inputs and for
negative magnitudes of cross-correlation. For positive and large magni-
tudes of cross-correlation, the unclipped correlator outperforms the sum
and square detector, and so may be optimum in this range. We observed
that, for positive cross-correlations, while the performance of all three
detectors fall off substantially with an increase in the correlation co-

efficient, the cost of clipping relative to the optimum increases only
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slightly, increasing from 2db to 3 db as the correlatibn increases from

0 to 0.5. For negative cross-correlation, while the unclipped correlator
performed as before, the performance of the PCC and the sum and square
detector increased as the magnitude of the correlation coefficient in-
creased. As before, the cost of clipping compared to the optimum
increases slightly. The increase in performance of the PCC is comparable
for negatively correlated noise to the decrease for positively correlated
noise,

The analysis is extended to two statistics, i.e., polarity co-
incidence and differences for 0.1 second duration sinusoidal bursts of
nearly known frequency when the noise inputs are correlated. The decrease
in performance relative to uncorrelated noise inputs is quite small. In-
deed, for certain cross-correlation functions the performance increases.
The increase in the cost of clipping with the correlation coefficient is
also quite small. For the worst case, and perhaps the most likely case,
where the cross-correlation function is proportional to the autocorrela-
tion, i.e., Rnan(T) = gR(T), the degradation can be kept low using the
polarity difference statistic. For a = 0.5, the degradation compared to
the independent case is about 1db. The cost relative to the sum and
square detector, for this case also increases by only 1db. The degrada-
tion caused by uncertainties of the signal parameters seem quite modest.
A scheme to implement polarity coincidence and difference detectors,

using microprocessor technology, is presented for the above problem.
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7.2 Suggestions for Future Research

The analytical form of the expectation of the product of four
clipped gaussian signals with correlated inputs, as calculated in
Appendix E, diverges in certain regions. In this dissertation a scheme
is presented to project those unstable points to a stable region, How-
ever, there is a need to develop a solution which converges in all
regions. To possibly achieve that, the following four ways should be
investigated.

a) A determination of the joint pdf of the outputs of four
clippers whose inputs are jointly gaussian and correlated could be
attempted. This joint pdf is expected to be the combination of delta
functions, because every output can only take two values. Having this
pdf in a closed analytical form can lead to an easier and possibly
more accurate computation of the expectation, evaluated in Appendix E.

b) Using a transformation of cartesian coordinates into 4-
dimensional spherical ﬁoordinates, the individual integrals in equation
(E-5) of Appendix E might be formulated in a more stable form.

¢c) Another way to facilitate the computation of the above inte-
grals originates from the fact that the correlation matrix between
four gaussian inputs is symmetrical. Hence, one could find a suitable
transformation to diagonalize this matrix, immediately transforming
the 4-D integrals into product of four 1-D integrals.

d) Price(28) has generalized Van Vleck's approach to calculate
the bivariate expected value of two random variables where these

random variables are arbitrary functions of gaussian random variables.
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While Gupta(zgJ has shown that multivariate normal expectation cannot be
analytically expressed in closed form, a formulation based on Rice's
approach may lead to a more stable numerical computation of this expec-
tation, |

Another subject for further research is related to implgmentation.
The polarity coincidence correlator is simple in its hardware implemen-
tation. Since the PCC has been analyzed for a wide fange of cross-
correlation shapes and the results are, or éan be made, very encouraging,
its implementation can be the subject of further research.

Chapter 6 of this dissertation gives some idea about the arrange-
ment of microprocessors. However, there is a need to develop this
hardware structure and software carefully based on particular micro-
processors. There are a few significant aspects of the implementation
that we have not explored. We have not explored the manner in which either
the supervisor microprocessor or the parallel processors accumulate the
statistics from each signal pulse for display on a CRT. While we have
determined that dividing each l-second segment into 40 intervals seems
reasonable, the number of parallel processors needed will undoubtedly be
significantly less. This number will depend on the particular microprocessor
and the efficiency of the scoftware.

We are confident, however, that 1f the receiver suggested in this
Teport were implqpented and tested, it would prove to be a valuable de-

tector.
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APPENDIX A

OPTIMUM TWO-CHANNEL DETECTOR

Consider the problem of detecting a random, gaussian signal that
is common to two channels containing stationary gaussian noise., If
the product of the integration time (T) and the signal bandwidth (B) is
large, both signals can be accurately represented by the Fourier Series
where the coefficients are statistically independent [see reference 3

for example]. Thus we can write

T

B
_ 2 . Vi
sj(t) = ifl aijy/T»cos iwg, + bij 7 sin 1w ., {A-1)
and
BT =~ —_—
= 2 cos i 2 cin i -
nj(t) = E:l c45 Jr} cos iw . + dijV/T sin iw ., (A-2)

where j = 1 or 2 and is the channel index. The assumptions that the
signal is either common to both channels or 180° out of phase, that
each noise input has the same power spectrum N(f)}, and that the co-
efficients are independent, enables us to write, for each frequency i,
the following spatial correlation matrices for the signal only (P) and

noise only (Q) cases.
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il il i2 i2
a. 1 0 +1 0
1l -
by | © 1 0 ‘]
P(i) = 8(i) s (A-3)
a, |2 0 1 0
b, | 0 +1 0 1
€1 Y41 &5 94,
¢, |1 0 p() O
d, | o 1 0 B(4)
Q(i) = N{i) s (A-4)
¢, |0 0 1 0
d:i.2 0 5168 0 1 J

where S(i} is the value of the signal spectrum at frequency iwo and

where

u
;1% i (1- ?} R12(u) cos m w u du

(2 >
€41 %42

where Rn(u) is the autocorrelation of the noise (or Fourier Transform

» (A-5)

O~ I O -3

u
(1- -f) Rn(u) cos m w u du

of N(f)) and Rlz(-) is the cross correlation between the two noise

inputs. Under the assumption TB>>1, this is closely approximated by
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N, (i)
12
i N() ° (A-6)

©
m

where le(f) is the Fourier Transform of Rlz(r).
If k) is a vector representing the four Fourier Series coefficients
of the detector inputs (ai, b.1 for each channel) at each frequency 1,

then

BT

N P | T ..-1
gn A = k+ i=21 [‘Zi T(i) ~ z, + z; Q) E:L] s (A-7)
. . . . f(z/signal and noise)
where A is the likelihood ratio, F(z/noise ORlY) , and
T(i) = P(i) + Q(i} . (A-8)

The optimum detector [any statistic nonotonically related to the
likelihood ratio] forms the statistic

T

RN TV RN YEO R I A (A-9)

=1 o

D
°Pt =1

After performing the algebra implied by equations A-9, A-8, A-3, and

A-4, it can be shown that

BT S; 2 2
(1vos )Ny (+2 g= TTIB;TJ (A-10)

where the + sign corresponds to signals exactly in phase and the -
sign corresponds to signals 180° out of phase, and a4, bil' a5 bi2
are the variables of z;.

We now wish to show that this statistic can be implemented by

the following receiver:
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ST . T
xl(t) L T 83y €os i wot + V/T bil sin i wot

lFilter

Square T
@ —|s at — 7
Law o]

Filter

Xz(t) = I Jfr— a;, cos i wot + u’-,i.- biz sin i wot

If H(w) is the transfer function of the filter, the output of the

sumner {(difference) can be written as

-3

-

B (a5, ¢ 85,) cosCingt + 8;) + ¥ Z @] (b * by

-

TR
.
TN |

sin i wot + 61) (A-11)

where Bi is the phase of H(iwo). The square law device and integrator

calculates the energy in this signal or

D=z [HEN [(a, + a7 + (b,

2
il ¥ biz) ] . (A-IZ)

This is the same statistic as that of equation (A-10) provided

S, S,
. 2 _ i i 1 -1
|H(iw ) | NEPVIR [1+2 N (1*9131 . (A-13)
i 1

Thus we have found the optimum detector if we can implement the filter

indicated by equation (A-13).
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APPENDIX B

DETECTION PARAMETER (OUTPUT SIGNAL-TO-NOISE RATIO)
OF THE TWO CHANNEL DETECTOR THAT IS LOCALLY
OPTIMUM FOR GAUSSIAN NARROW BAND INPUTS

S,

For very small input signal-to-noise ratios ﬁl , the optimum filter
i

(Equation A-13} can be replaced with
sl

2
H{iw ) |® = ——p———m
0 2 2
N;“ (1+py)

(B-1)

The resultant detector is called "locally optimum." For very narrow
band signals, this amounts to just a narrow band filter that just passes
the signal. If ni(t) are the noise in each channel just after the

filter, the test statistic can be written as

[p, (1) £ n,(t-1)° at, (8-2)

wy
1
0 -

where Ho represents the hypothesis of noise only and

T

- . 2 .2
SHl = i [2 s(t) + n;(t) nz(t-T)] dt, (B-3)

where H1 is the alternative of an additive common signal. The output

signal-to-noise ratio (Dopt) is given by

EH (8) - EHo (8}

- 1
opt ~ J/V
ar, (S)
H
0

(B-4)

After some lengthy but straight-forward calculations, it is determined

that
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By (8) = 20,7 Tlepp,(0] (8-5)
2
EH1 (8) - EHo (S) = 4 <S8°(t)> T, {B-6)
and
v S) = 4 2T } 1 k k) + k k-T) +p, o (k+ 2 dk
‘arHo ( ] = Uﬂ 5 ( = T) [pll( ) 922( )+ plz( 'T)_pl2( T)} )

(B-7)

where onz is the variance of the neise, T is the integration time,
Dlz(T) is the normalized cross correlation function between nl(t) and
nz(t), and DII(T) is the auteocorrelation function of nl(t) or nz(t).

Substituting into equation (B-4) we get

2
<57(t)> 2T
D = =2 A7 —_— , (B-8)
opt 2 J// 1 T k
o 210-5 vk, o oa
[#]
where
VK, 1) = Togy(K) + yp(K) % P, (k-T) + 0, (k+TI]Z L (B-9)

Let us now make the very unrealistic assumption that the noise

inputs are uncorrelated or 012(1) = 0 for all T. Assuming further

that pll(k) = p22(k) p(k), equation (B-7) becomes

2. Tk 2
VarH (8) =16 0. °T [ (1- =) p (X)dk,
0 n o T

oo

8T f anpz(k)dk, for BT >>1

-0

LLH
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and in the frequency domain the above expression becomes

% N A
8T/ 1= [HGH|I® of,
- 0

N 2

O
8T < 2B,

"

where B is the filter bandwidth. If the signal is a sinewave with
amplitude A, then equation (B-6) becomes

AZ
EH (8) - EH (8) = 4 = T.

1 o)

Substituting again into equation (B-4),

~

{(B-10)

zrb
I

Popt

o]

Finally, if there are N bursts of 0.1 second duration signals, then
T=20.1N and

. A2 /N

Popt * N_/ 108

(B-11)
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APPENDIX C

DETECTION PARAMETER OF AN IDEAL ENVELOPE DETECTOR AND
COMPARISON WITH THE TWO CHANNEL LOCALLY
COPTIMUM DETECTOR
In this Appendix we evaluate the ideal envelope detector under

the assumption of independent noise inputs and compare it with the two

channel results of Appendix B. The output of an envelope detector is

given by
T 2 T _ 2
S = [f z(t) cos w.t dt)” + [J z(t) sinm w .t at)” , {(C-1)
0 o

where under the hypotheses Ho’ z(t) = N{t) and under the alternative

Hl,z(t) = s(t} + N(t). It is easily seen that

T T
E(S) = Jor iE{z(tllz (tz)} cos wc(tl-tzj dt,dt,
It follows that
TT
EHO(S) = i g Rn(tl-tz) cos wc(tl—tzj dtldt: (C-2)

and

TT
EHJ(S) - EH () = i g s(tl)s(tz] cos wc(tl-tz) dtldt2 . (C-3)

o}

We let s(t) = A sin {(mc + Aw) t+68], where Aw is the uncertainty

in the signal frequency. Equation (C-3) can be evaluated as
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2 cos [(Zmc + M) T+ ] - coé 8

, cos (AwT+8) - cose

A
E S) - E S) = —
H1[ ) HO( ) =g 1 Zu, * b b !
. 53 {51n [ch +Aw) T+8] - sin 6 | sin(MuT+8) - sin B } 2 (C-1)
4 (2wc + Aw) Aw '

The (ch + Aw)  terms are much smaller than the other terms. A good
approximation involves ignoring these terms, and equation (C-4) can be
manipulated into

2.2
L AT 2
EHI(S) - BHO(S) § =— sinc” A £t . (C-5)

It can be determined that for gaussian neoise,

2
NO u 2
VarH (8) = - T [ (1- TJ cos” w u du
) )
N T ,
== [1 + sinc® 2mfcT] . (C-6)

The output signal-to-noise ratio D can be determined by dividing

ENV
equation (C-5) by the square root of equation (C-6) or

_ A2T sinc2 TALT (0_7)

Denv 3N
[o]

/q;sincz 2nfeT

For T = .1 sec, fc = 1000 Hz, this becomes

A2

ENV 20N0

2 ,maf

p sinc (TB—J . (C-8)
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Finally for N pulses,

2
_ A .2 mAf
Peny = 75§; v N sinc ) - (C-9)

If we compare the two channel detector, equation (B-11) for a
filter bandwidth (B) of 30 Hz with this one channel envelope detector,

we get

D
W o 5,866 sinc? TBE (C-10)
5 10
opt

This equation is plotted in Figure (C-1). For greater uncertainties
it is considerably worse.

0f course this analysis is very preliminary because of the un-
realistic assumption that the noise inputs are independent. If we
compare two-channel detector with two outputs of I.E.D. then (C-10)

becomes

D

W _ 3.7 sinc? -T—'l-‘%f- (c-11)
opt

In theory, we can extend coherent analysis beyond one pulse. But
from Figure (C-1), for coherent detection, beyond one pulse of dura-

tion 0.1 sec, we should know the frequency to within 0.01%.
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APPENDIX D

CALCULATION OF DETECTION PARAMETERS

I. Polarity Coincidence Correlator (PCC)

The detection parameter for the PCC is

a ElSE - ES)

= s {D-1)
PeC  /Var, (ST
with hypothesis
H: x(t) = n{t), all t e (0,T)
K: x(t} = n{t) + 5(t)

n(t), S(t) are noise process and signal, and

w
n

N
I h [x(t+in)] , (D-2)

i=1

where

2
I3 (Sgn x, (1) + Sgn x, ()] (D-3)

h{x{t)]

the xi(t) refer to two inputs and N is the number of obversations.

The variance of the test statistic is

var [S] = E [S°] - E°[S]
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N N N 2

var [S] = E{ §J 7 h[x(t+iT)] hIX(t+jT)1} - {E[ [ h{x(t+it)]]}
i=1 j=1 i=1
N N N
= 7 (E{hzii(t+i13]} - Ez{h{i(t)}] + 7 ] [E{n[x(z+iT) }]
i=1 . i
i¥]

* h[X(t+31)]} - EX{hIX(L) ]

N
N var {h[x(t)]} + 2 § (N-k) {E[h([x(t)] h[x(t+kT)]]
k=1

n

- B2 [h[E)]]} (D-4)

14)

From Van Vleck( it is known that Engn xl(t) Sgn xz(t)] =

(2/ﬂ)2 s:'m-1 p, where p is the correlation coefficient, Using this
result,

- 1 2 1.2 |
var {h[x(t)]} = i- 1/7° (sin” " p) _ (D-5)

and

E {h[X(t)] h{X(t+k)]} = 7 + 1/ sin"'p + % E [Sgn x, (1)

* Sgn xz(t) Sgn xl(t+k) Sgn xz(t+k)] (D-6)

After substituting the results of (D-5) and (D-6) in {D-4) we obtain,
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N
var [§] = % 1 - (2/n sin“1 0)2 + Z (1- %J {E[Sgn xl(t) Sgn xz(t)
k=1

1

* Sgn xl{t+k) Sgn x,(t+k)] - (2/m sin” p)z 3 (D-7)

We now calculate the shift in the mean of the statistic or

EK[S] - EH[S]

& oo
f - -
EK(S) = 2N J j(2n) 1 [det P] 172 . ca. dxldx2 (D-8)
00
-1y x
where a=-(1/2) (xl,xz) [P] 1
X
2
and correlation matrix
H
0y R, _ (O}
X Xq X %,
PK = (D-9}
R () R (0}
X1%, XoXs i

After changing the integral of (D-8) into polar coordinants and using

the identity,
%/2

j"_—_"_l»r gfn 5% " -2 w2 4 sin7iny (D-10)

!
and after some simplifications, we get

R, . {0)
X1%2

B Is) = B1/2 + sin”! L2 (D-11)
xlxi(O)
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Similarly,
] {D-12}

N -1
EH{S] = E{ﬂ/Z + sin

Utilizing results of (D-6), (D-11), and (D-12) in (D-1) we get,

VN (2/7) [sin”? Py - sin”! Ayl

Dpcc : N
-1 .2 K 21 42,12
[1-{(2/m) sin™ o Y% 2 ] (- PIQK) - {(2/m) sin™ p}7]]
k=1
(D-13)
Rx X (0
172
where, B, =
K Rx X, {0)
172
R. R_ {0)
- nl 2
P R_(0)
and
Q(k) = E|Sgn xl(t) Sgn xz(t) Sgn xl(t+k) Sgn xz(t+k)] {D-14)
An evaluation of (D-14) is presented in Appendix E.
1I. Detection Parameter for the Unclipped Correlator (Dc)
The test statistic for the correlator is
N
S= 73 x (8%, (t) (D-15)
i=1
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where xi(t) refers to two zero mean gaussian inputs under the hypothesis.
For the purpose of the evaluation of the detection parameter D., we will
assume a general shape of the autocoreelation and cross-correlation.

Thus in this case,

E 5) - EH(S] = N R_(0) (D-16)

where RS(O) is the signal power

2 2
VarH(S) = EH[S ] - EH (s}
NN N
- EH[Z; xg (8] Xp(t;) X (t) xp(t) = Byl] x,(t;) xz(ti)]z
+ J (b-17)

The first part of the above expression for zero mean gaussian random

variable can be expanded as follows:

Elx)(t)) x5(t5) x3{tg) x,(ty)] = Rxlxz(tz‘tl) Ry :-:4(‘4"31+

3

+ R ft.-t.} R (t,~t,) + R (t,-t.) + R (t.-t,)
x1x3 371 x2x4 4 "2 x1x4 4 71 x2x3 3 "2

(D-18)

Using the above expression in (D-16) and after some simplification,
we can write

N

2 k 2
Var, (S) = N[R7(0) + Rxlxz(oy +2 7 (- L {R7(k) + R (K) - R

(-x)}]
X
Lol 1%2 1%2

{(D-19)
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where R(k) and Rx x (k} are the auto-correlation and cross-correlation
172

of inputs xl(t) and xz(t} respectively. Using (D-16) and (D-19) the

detection parameter for the correlator can be written as

Jﬁ"Rs(oa

c N
[R%(0) + R (0) + 2 ) (1- X R%) + R, _ (X) R (-k)]m
X%y k=1 N XX, X Xy

(D-20)

III. Detection Parameter for the Sum and Square Detector (DSS)

The test statistic of the sum and square detector is defined as

N
S= ¥ [xl(ti) + xz(ti)]2 . (D-21)
i=1
The shift in mean becomes
E¢(8) ~ E4(S) = 4NR_(0) . (D-22)
also
N N
£ (5) - E, g ; [x,(t)+ xzfti)]z [x; () + xz(tj)]z (D-23)

Expanding equation (D-23} and using the following equivalents

Elx(t;) xp(t;) %, (£5) %, (t))] R%(0) + znz(ti~tj) ,

2
RZ(OJ + 2R XX (tl-th )

E[x,(t;) x,(t) xz(tj) xzftj)] %

115



Elx; (1)) x,(¢,) x, () xz(tj)] R(OR, , (0) + 2R(ti—tj} R, Xq(titj) .

X 1%2

172

2
X

Elx (55} %y (£5) %p(t;) ,(t5)] Rz(ti-tj) e B L (O) ¢ R (55on)

172 172
R (t-"'t') )
X1X2 ] 1

and E, i8] = 2N{Rx1x2{03 + R(0)] ,

the variance becomes

Var,(s) = E[s%] - E2[S]
H H
2 2 R K
= 88 {R°(0)+R", _ (0) = 2R(OJR (0} + Ia-p .
1%2 X1%2
k=1
J2R2 k) + 0.5 (RE. . (k) R, L (k) + 2(R L (K)
: *1%2 1%2 1%2
* Ry, (R RO+ Ry G0 Ry (ROT) (D-24)
Therefore,
D = 4N_RS(_0-).- (D'zs)
- 55y VarHiS)

where the variance is given in (D-24).
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APPENDIX E

THE EXPECTATION OF THE PRODUCT OF FOUR CLIPPED
GAUSSIAN RANDOM VARIABLES

We use the following notation

Variables Random Variable
(samples of Stochastic Process)

X| cmtmmmmmsssmee e x, (1)
Xo == - -mem-o------ X, (t)
Xg == - e eeesesms e xl(t + KkT)
X, e e e e - x,(t + k1)

where the X; are zeT0 mean gaussian.

The general correlation matrix C is given as

Rll{OJ Rlz(O) Rll(kT) Rlz(-kT)

RlZ(O) RZZ(O) RIZ(kT) Ry, (k1)
C= (E-1)
R (k1) Ryp(k0) Rpp(0) Ry, (0)

LE{u(-k'r) Rzz(kT) RIZ(O) R22(0)

where Rii(kt) and Rij(kT) are the autocorrelation and cross-
correlation between Xy and xj (i, = 1,2)

The joint gaussian p.d.f of four variable can be written as

4 4

P em7% et oV e - T T agy xxgd (E-2)
i=1 j=1
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where the coefficients qij are the elements of C'l, We are to compute

R=E[ Tl Sgn xi] (E-3)

i=1

where Sgn x(t) is 1 if x(t) > 0 and -1 if x(t) < 0.

© oo ®
[
R |
e

which can be written as a sum of 16 integrals in equation (E-5)

(
J J J Sgn X, Sgn X, Sgn g Sgn X, p(x) - dx (E-4)

w00 w0

found on the following page.

Introducing a suitable change in variables, each of the 16

ingegrals can be written as

L L 44
1E& J J exp {-(3) 1 1 Wi xixj} dx (E-6)
i=] j=1
0000

where the coefficients wij are identical to qij’ but with appropriate
changes in signs which are due to the change of variables.
In this Appendix, the solution of one of the 16 integrals will be

presented, where the remaining 15 can be solved with a similar result

4
and the summation of the 16 results is the expectation of T Sgn X, -
i=1
Let (E-6) be written as
0 o o
a
1= J [ J J e dxl dx2 dx3 dx4 s (E-7)
0000

where
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p(x)dx

g ———— O
§-——0
oY
o1

p(x)dx -

g ~~——————~0
g ——0
o8

8 ————o0

p(x)dx -

8 e O
g ———o0
g —--G

O i e, B

p(x)dx -

g +————0
g ———o0
g ———0
g§ ~————o0

|

4

e ]

s

]

L —

[=
g~——o0
O%——"-—"—8§

p(x)dx)

p(x)dx -

O §

g

p(x)dx +

o3
8
g ———— 0

o8
]

|

-0

p(x)dx +

0
§Y——a
g§r——""0
8 —————————— O

p{x)dx

o8
)

O—————= §
i

-

p(x)dx +

]
o———— 3

p(x)dx -

(E-53
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4 4 4
2 ,
a=-(1/2y ] woux+ ] ] W5 XX (E-8)
i=1 izl j=1
i#j
Integrating with respect to Xy first,
o W

11 2 ,
3 Xy (FpXp + Wygxg + Wypxy)
I=A]¢e " dx (E-9)
)
where A represents all of the constant terms.
Using the identities,
© i
X _ x)
e = Z ﬂl-r and
i=0
==}
i Ezv' x? r(lgl)
X" e » dx = THo(e1)/2 (E-10)
26
5]
(E-9) can be written as
S0 o Q0
(
7 réy ( e agg
I= —_ W, x W, X W X - e’ . dx.dx.dx
ico W (i+1)/2 1272771373 71474 2773774
11  y
000 2(=7) 1
where
b= -(1/2) [W,,x 2+W X AW X 2] + Wo XX +W, X X, +W, X, X
2272 3373 4474 2372737247274 7347374
{(E-11)

Rearranging for X,

120



22 2
-7 X Xy (Wa3X3*WoaXy) , , i
I =8 e - (h12x2+h13x3+h14x4) dx2
]
B represents the terms and constants which are not involved in the
integral with respect to X5. Using the binomial expansion,
W X
2y’ T "23 R x
I=B1|e { - x )7 e ] (W, %)
520 j! 23 3*%24%y =0 1272
)
(W X, +W. X )i”k (E-13)
1373771474
and integrating
4 J 12k j -x TC o
1=8 [ | (WygXg#WouXyd” (W) X3+l 4X,) W, (1e%e1)/2
j=0 k=0 2(="
(E-14)
Again defining some E which represents the terms not involved in
evaluation of the remaining integrals, we can write
(X0 x5 (W x.+W, x ) 17K . dx.dx (E-15)
2373 72474 1373771474 3774
o]
. 2,
where ¢ = -(1/2) {W33x3 ¥, 4%, } + Wo XX,
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1 - T
Nsa¥s%y (WoyX3%y)

I —5
r={
. ] j
1 J - + 2 1 j -
(Wy oz, x,)7 = ZO (Kygx5) (h24x4)J s [ (E-16)
= ]
i-k .
i-k _ m i-k-m |i-k
(Wi aXztWaxg)™ = mEO (Wygxz) ™ (Wpax,) [mJ

The term involved in the remaining integrations is

[< =« =]

( o 2 2

J J x3r+s+m x4r+3-s+1-k-m e-(l/Z)({WSSx3 +v\44x4 })dxsdx4 (E-17)
o0

(- -]

i 2 2
w33 X3 .. Waa X4
= e+s+m - 2 dx x THi=stickem -~mm dx4
Xg e 3 4
o 0
T+5+m+1 T+j+i-k=m-s+1
¢ ) r 7 ) (-18)
- W33 (r+s+m+1) /2 W44 (r+j+i-k-m-s+1)/2 -

Putting (E-15) and (E-18) together we have the final results.
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_ Vi ve, €1, €T, ¢f
(61-3) HE-xlm N s-[ My Mg M,
)z s Ge)z) if e i
2/ (smss+a) 2y 2/ (0% z/+1) e
z z ) z
Hn+_=+m+.~u J ﬁﬂhw_.;.ﬂ.wu J mlwﬂ...% J

A-T

]

-y

£ ¢
2/ (1+u-s—-1+{+1) vwz

A

4
m~+E|m-x-h+ﬁ+ﬂw d

0=l 0=§ 0=Y 0= oO={

T

-t ! I =
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APPENDIX F

A Flow-Diagram for the FORTRAN program that computes the
expectation of the product of four clipped, jointly gaussian
functions is given. Another general Flow-Diagram follows, which
uses this expectation. Subroutine to compute the Detection Para-
meter for the Polarity Coincidence Correlator and compares results

with Analog Detectors.
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Flow Diagram.

SUBROUTINE EXPECT(C,DET,IT,OUT)

TART)
/

—
IT, C, DET

NORMALIZE C

INIALIZE :

StM =0 , I=0
KOUNT=0

!
h

J=0

(@)

®

IR=0

El
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5 (=)
k=0
{
h
L=0
M=0
&
10DD=0 YES B
NO
KOUNT=KOUNT+1
SUM= SUMHCOE (ZOUNT) *T
1
o
MM

©
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YES
1=1+1
= &
ES
E=K+1
G2
YES
IR=IR+1
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IR SIT S
YES
J=J+1
NO
YES
I=I+1
NI
YES

Y/

out= s/ (23 /DET cc1,1h)

RETURN

s
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FORTRAN Implementation.

List of Principal Variables

Program Symbol Definition

IT Truncation of Infinite Summation.

C Inverse of Correlation Matrix P,

DET Determinant of Matrix P,

1,J,1IR Index of Infinite Summations.

K,L,M Index of Finite Summations.

10DD Checks Whether I or (K+J) or (M+L+IR)

is 0dd. If any of them is Even then
that Calculation is Skiped.

sSuM Partizal Result

T Value of the Product of Elements of Upper Triangle
of C Matrix, while Elements are raiéed to the
Powers as mentioned in Appendix E.

ouT Expectation of the Product of Four Clipped

Gaussian Functions whose Correlation Matrix is P.
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Flow Diagram. tart)

Define Parameters
Compute {(COMMON)

Coeffecients to be used
in Expectation Subroutine

Initialize Variable
Parameters
Alpha,AO0,Gama to Define

Cross-Correlation Shape
©

Compute Elements of
Matrix P
Which are Independent
of k

:

Sum =0

Initialize: k=0

4 O
—

k=lk+1

;

Compute Elements of
P Matrix
Which Depend on k




@

Compute Determinant
of P (DET)

y

Compute pml

Call EXPECT

Update Summation
E:(l-k/N)*E[Tngn (xiﬂ
i=l

Compute and Store
Detection Parameter
For PCC

Compute and Store

Other Detection Parameters

For Correrator & Sum & Square
Detectors

}

Change Variable Parameters
Alpha, A0 , Gama

L

(&)
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Print and/or
Plot Results
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