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Section 1

ExecuTive SummaRry

Here we present an overall summary of the principal achievements dur-
ing the course of the investigations carried out under this phase of the
research contract.

In Section 2 we give an overall summary of the Non-Destructive Methods
that utilize the interaction of electromagnetic fields with the sample.
Some specific topics are: Some Early NDT Work in England, The Importart
Efforts by Semmelink in South Africa, More Recent Applications and Practices,
Early Theoretical Investigations, Related Investigations in Geophysical
Prospecting, More Recent Analytical Studies, An Alternative Formulation for
Solenoid Excitation, The Dual Problem, and finally we introduce The Prolate
Spheroidal Void Model of Hill and Wait that is covered in more detail in
later sections.

In Section 3 we deal with the electromagnetic theory of an infinitely
long cylinder for the case when the electrical conductivity and the magnetic
permeability are uni-axial tensors. This is an idealized yet relevant mo-
del for a stranded wire rope or cable that is to be excited by an external
alternating-current source. The general and special forms of the solution
are discussed in the context of non-destructive testing (NDT) of the rope.
The method of deducing the electromagnetic response for a finite source is
described in the special case where azimuthal symmetry prevails.

In Section 4 a remarkably simple and novel solution is obtained for
the fields induced in an anisotropic cylindrical shell that is located co-
axially within a long solenoid. This could be the basis of a non~destructive
measuring scheme for stranded wire rope when we have actually accounted for
the winding geometry in a relatively crude fashion.

In Section 5 we extend a previous analysis for the series impedance of
a long solenoid to allow for the cylindrical layering of the encircled con-
ductor. The results are discussed in the context of non-destructive testing
of steel ropes that may have external or internal corrosion. It is shown
that even an internal layer of reduced conductivity and permeability will
be detectable if the frequency is sufficiently low to permit penetration of
the primary field.

In Section 6 we present a self-contained analysis for the impedance of
a solenoid that encircles a conducting cylinder that has an internal flaw
or anomaly that is also cylindrical in form. A perturbation method is used
to obtain an expression for the fractional change of the impedance as a
function of the size and location of the anomaly.

In Section 7 we consider the effect of a thin prolate spheroidal void
in an infinite conducting circular cylinder. This is used as model for a
broken strand in a wire rope. The rope is excited by an azimuthal magnetic
line current which is a model for a thin toroidal coil. The anomalous



external fields are computed from the induced electric and magnetic dipole
moments of the void.

In Section 8 we consider again the thin prolate spheroidal void in an
infinite conducting circular cylinder. But now the rope is excited by an
electric ring current which is a model for a thin solenoid or multi-turn
wire loop. The anomalous external fields are computed from the induced
electric and magnetic dipole moments of the void. TFor this type of excita-
tion, the induced axial magnetic dipole moment is the dominant contributor
to the scattered field.

In Section 9 a stranded wire rope is again idealized as a homogeneous
conducting and permeable cylinder of circular cross section and of infinite
length. The rope is excited by a coaxial solenoid or finite length multi-
turn coil that carries an azimuthally directed alternating current. The
novel feature here is that the rope and the enclosing solenoid may have a
uniform velocity relative to each other. Using a non-relativistic analysis,
the nature of this dynamic interaction is examined and numerical results
are presented for parameter values that are relevant to both static and dy-
namic conditions in non-destructive testing of such cylindrical conductors.
It is shown that the dynamic interaction with the rope specimen is not ap-
preciably modified from that for the static condition unless the motional
velocity is somewhat greater than about 10 m/s.
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SuRVEY OF ELECTROMAGNETIC METHODS

oF NoN-DESTRUCTIVE TESTING

INTRODUCTION

Wire ropes are used extensively in many life sustaining situations.
Elevator and mine hoist cables are two notable examples but we might also
mention the support cable for aerial tramways, ski chairlifts and gondolas,
helicopter and suspension cables. 1In this review, we will restrict atten-
tion to wire ropes used in mine hoists. There is an obvious need to per-
form tests of the integrity of such ropes without in any way impairing
their function. Apart from careful visual examination and measﬁrements of
the external diameter, the non-destructive test methods available utilize
electromagnetic fields, x~rays or mechanical waves. Here we will review
progress in the electromagnetic methods.

The early history of the subject will be described briefly since this
provides a remarkably good introduction to the working principles. We will
then progress rather quickly in time up to the currently used techniques
and operating procedures. Next we drop back in time to summarize some of
the basic papers that deal with the basic concepts and the techniques for
dealing with the testing of cylindrical conductors by both electric and
magnetic methods. At this juncture, we call attention to the extensive
related work on electromagnetic probing of geophysical targets such as ore
bodies and other sub-surface conductors. Finally, we turn to the various
investigations, primarily of a theoretical nature, that have been carried
ouat ; we include here the mést recent work. in the later sections of this

futerim summaryv report we deal with specific aspects in more detail.



SOME EARLY NDT WORK IN ENGLAND

Wall [1] gives an early account of the design and operation of elec-
tromagnetic rope testers. The test results were given for specially con-
structed ropes. Using basically an A.C. technique, his method makes it
possible to detect broken wires within a rope that represent less than 5%
reduction in the total cross-sectional area. As the author indicates, the
investigation was motivated by testing of wire ropes used in collieries in
England. But the author also indicates that other important applications
are to tram cables, airship mcoring ropes, and to suspension bridge ropes.

Wall is an early proponent of the A.C. method as opposed to D.C. mag-
netic testing favored in more recent times. He lists some of the advantages
as follows: a) the rope need not continuously move through the magnetic
system, b) the A.C. signal is easy to detect and c) any remnant magnetism
due, say, to a previous test is wiped out.

He is interested in testing colliery ropes of the locked coil type up
to 2% inch diameter. In such locked ropes, the outer and one or more of the
inner layers are locked together to form flexible sheaths. This constrains
the rope to maintain its circular form as it passes over the winding drum.
He then quotes a classical skin depth formula that gives a guide to the
penetration of the A.C. currents into the core of the rope. He points out
cogently that, once the A.C. energy penetrates through the outer locked
coil sheaths, it will be "practically" uniformly distributed through the
remainder of the cross-section since the wires are so effectively stranded.

The tests were made by means of a laminated iron yoke that has pro-
jecting limbs with machined tunnelled holes as indicated in Fig. la. The

sample length of the rope was fixed concentrically in the holes. A search




coil of 20 turns was wound around the center portion of the rope that is
midway between the projecting limbs. The relationship between the flux
density in the rope and the peak value of the magnetizing excitation at

20 and 50 Hz was measured. Wall was able to ascertain that the flux pene-
tration was almost complete at 20 Hz but only partially so at 50 Hz.

In the same pionecring paper, Wall studies the effect of mechanical
strain on the magnetic permeability with special reference to A.C. excita-
tion. He also examines the change in the reluctance of the air space due
to the eccentricity of the rope in the magnet system.

He concludes that "whilst a flaw of about 37 of the total cross section
is detectable, a flaw of about 5% produces a pronounced effect, whilst a
flaw of about 18% gives a very striking disturbance of the record". Some
of Wall's results are summarized in Fig. 1b.

In a follow-up study, Wall and Hainsworth [2] investigate the way in
which the flux is distributed within the rope. As they point out, this
information is relevant to the estimation of the depth of a flaw in a locked
coil or similar rope as used in collieries. They feel a mathematical approach
to the problem is intractable. Instead, they build up a special sample or
physical model with embedded search coils.

The experimental configuration was chosen to be a replica of a locked
coil rope except that the layers of wires were not so close as in actual
ropes. Straight mild steel wire rods of 1/8" diameter were employed; each
rod was coated with insulating enamel before assembly. A first layer or
central group of 7 wires was formed and a search coil (A) of 200 turns was
arranged to embrace this group. A second layer of 20 wires was then added
and the search coil (B) embraced this layer. Next came the third layer

with a further embracing search coil (C). Finally, a fourth layer of 44



wires was formed and the search coil (D) embraced it. Each of the four
search coils had 200 turns. Then, by connecting pairs of consecutive
search coils in opposition, it was possible to measure the flux magnitude
associated with each layer.

The differences between the waveform of the induced EMF's in the
various layers are very striking as indicated in Fig. 2. Also, as indica-
ted in TFig. 3, the B-H response curves are shown for central group and the
surface layer. Here the screening effect for the central group is very
apparent. For the surface layer, the situation is somewhat different since
apparently the A.C. excitation has the effect of increasing the apparent
permeability. To some extent this tends to counteract the eddy current

screening.
THE IMPORTANT EFFORTS BY SEMMELINK IN SOUTH AFRICA

Semmelink [3] gives an extremely interesting account of the early
history of electromagnetic testing of wire ropes in South Africa. He
indicated that in a paper read to the Transvaal Institute of Mechanical
Engineering in 1906, Mr. C. McCann proposed an "electrical apparatus' for
ascertaining the cross sectional area of wire ropes. 1In this scheme, a
detachable coil around the rope was supplied through a stepdown transformer
from the mains supply. A laminated yoke completed the magnetic circuit and
an ammeter was connected in series with the coil. It was claimed that
"the current falls exactly in proportion to the size of the rope'".
Semmelink was also well aware of T.F. Wall's [1] work in England that we
described above. He points out that the disadvantage of Wall's method is
that the rope speed must be very slow due to the very low frequencies

being adopted. Furthermore, the locked type ropes and the use of high




A.C. flux densities causes severe heating of the rope.

The first experiments described by Semmelink were conducted in 1946.
A magnetizing coil of twenty turns of welding cable was used carrying a
current of 100 amps at 50 Hz together with a co-axial search coil of
several thousand turns. The rope was passed through the centers of both
coils. It was found that all visible corrosion and broken wires caused
voltage variations in the search coil that were measured by a peak reading
voltmeter and an oscilloscope. Semmelink [3] then tested about fifty main
winding (hoist) ropes. The tensile strength of the wire was either 123/134
tons (2000 1b.) per square inch or 128/140 tons per square inch. The ropes
have six strands of approximately thirty wires laid on a sisal core which
is impregnated with lubricant. The diameter of the ropes varied from 1%
inches to 2 inches. The ropes were similar to the type shown in Fig. 4.
The steel was ascertained to have the following magnetic properties: rela-
tive permeability = 44 for a magnetizing force less than 1 oersted, maximum
permeability = 320 for a magnetizing force of 25 oersteds, maximum flux
density = 14000 gauss for a magnetizing force of 200 oersteds, retentivity
= 9500 gauss, coercive force = 20 oersted, hysteresis loss = 0.35 watts
per c.c. at 50 Hz. He found, what is now generally known, that an increase
of tensile stress in the wire causes an increase of permeability. For
example, a stress of 65 tons per square inch causes an associated increase
of permeability of 147 even for a magnetizing force of less than 1 oersted.
He also noted that twisting of the wire caused a decrease of 8% of perme-
ability for 180° of twist per foot of wire. Semmelink [3] also measured
the change of D.C. resistance of the wire rope for stresses varying from
zero to 70 tons/square inch. Only 1.17% increase was noted over this range

that was in accord with the percentage increase of length due to elasticity.
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In deciding on an A.C. method, Semmelink chose to employ a low mag-
netizing current. This has two advantages: 1) internal heating is mini-
mized and b) better penetration of the rope due to the relatively small
initial permeability (i.e. he is working on the virgin part of the B-H
curve). A schematic of his measuring scheme is indicated in Fig. 5.

In a later paper, Semmelink [4] describes a more scphisticated approach
to the eddy current testing of wire ropes. The schematic diagram of his
measurement set up is illustrated in Fig. 6. As indicated, the rope is
excited by spaced coaxial coils and the pick up coil is located centrally.
The output of the pick up coil is amplified and detected by a phase sensi-
tive detector.

In the absence of eddy currents, the pick up or search coil voltage
leads the magnetizing current by 90 degrees. However, because of the eddy
current losses, the phase shift is modified as indicated in Fig. 6. Both
the reactive component Ex and the resistive component ER can be balanced
out in an appropriate adjustment of the potentiometers. Thus, the "output'
for a given rope can be indicated on a double pen recorder.

The rope speed during a test depends on the response of the recorder
and of the detector circuit. Furthermore, due to the choice of a low
operating frequency (e.g. 80 Hz), the response of the detectors can not be
fast and Semmelink chooses a time constant of 0.1 second. Thus, if the
shortest variation to be detected along the rope is 10 cm, the rope speed
should not exceed 10 cm in 0.1 second (i.e. the rope speed should be less
that 200 feet per minute).

The coils, wound on a bakelite former, are 6 inches long, 5 inches
outer diameter and 3 inches inner diameter. The two magnetizing coils have

10 turns each. TFor a magnetizing current of | amps, this gives an exciting
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field at the center of 0.43 oersted. The pick up or search coil also has
ten turns. The whole assembly is hinged with spring loaded contacts to
maintain the electrical integrity needed when the two halves are clamped
around the rope.

A number of interesting results have been obtained by Semmelink [4].
For example, a decrease of eddy currents causes an increase of flux with a
resulting increase on the EX trace and a corresponding decrease on the
ER trace. This often is associated with decreased contact between the
strands. The reverse situation has also been found when there is increased
contact between the strands. Such stressful situations occur at the cross-
over points where ropes pass from one layer to another on winding drums.

Slight corrosion in the rope leads to a deposit of non-conducting
material between the wires and to a reduction of eddy currents. This
usually means a decrease of both Ex and ER traces. Semmelink also
indicates that internal corrosion appears to occur usually over relatively
short lengths often at intervals corresponding to the circumference of the
drum,

External corrosion manifests itself in a large reduction of the EX
trace but only a small reduction in the ER trace. Such corrosion can
occur over long lengths of the rope (e.g. 1000 feet).

Semmelink [4] found that inadvertent D.C. magnetization of the rope
(e.g. from the earth's magnetic field) could lead to violent transients in
the Ex trace when the rope moves at high speed through the coil assembly.
In one case, the rope had remained at rest for long periods with one section
of the rope extending from the drum to the headgear sheave in a northerly

direction.
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MORE RECENT APPLICATIONS AND PRACTICES

Hiltbrunner (5] gives a good description of what is known now as the
D.C. magnetic testing method. This approach has been highly developed in
Switzerland for the non-destructive testing of tram-way wire ropes. Essen-
tially the method is based on imposing a strong axial magnetic field to the
sample by either a solenoid coil and/or or permanent magnet. The search
coil is oriented in the radial direction and produces a voltage response
only when there is some type of lateral non-uniformity.

Lang [6] gives an extensive description of an A.C. testing device for
wire ropes. Although he does not acknowledge the fact, the concept, method,
and operational procedure seem to be based on the earlier work of Semmelink
[3,4]. However, Lang uses only one single-turn transmitting coil with a
coaxial search coil. Most of his data are shown for a frequency of 30 Hz.
Lang found that in all cases of broken wires detected, the "X" trace shows
a sharp reduction presumably duc to a decrease in the axial magnetic flux.
In a number of cases, sections of rope with apparent missing wires were
found. This was believed to indicate a wire separation at a faulty spot
weld. It is unfortunate that the numerous test results published by Lang
are not accompanied by "ground truth" information on the actual state of
the rope. He does show a few interesting comparisions between the measured
breaking tensile strength and the "R" and "X" readings at 10 Hz for locked
coil ropes. Such data, however, were not provided for the 30 and 80 Hz
tests on the stranded ropes.

Larsen et al [7] describes various devices for both D.C. and A.C. rope
testing that are currently available. They mention that the Rotesco device

as described by Lang [6] has been successful in 1970 in predicting tensile
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reductions of about 5%, although the extensive comparisons were not ''quan-

titative'.

Morgan {8] presents a general review of electromagnetic non-destructive
test methods applied to wire ropes. The discussion is entirely qualitative.
He makes a number of recommendations for further development in Australia.
Morgan and Symes [9] then describe the activities that led to the creation
of a government sponsored project at the University of New South Wales.

They give a largely qualitative description of their current research on
both methods of testing wire ropes. They also describe some tentative ideas
about an A.C. device that is to operate at a frequency of 1 kHz. Surpris-
ingly, they make no mention of many A.C. devices that hitherto have been
used elsewhere. It is possible they will find that 1 kHz is rather too

high a frequency for effective penetration to the core of most mine hoist
ropes.

Stachurski [10] gives a very useful summary of the physical concepts
employed in D.C. magnetic testing for flaws in wire ropes. A number of
interpretative schemes are outlined in a qualitative manner. Also, he uses
prescribed forms of flaws, breaks, and cracks to calibrate the device. Much
useful data on the design and implementation of the defectograph device are
also given. It is evident that this Polish group have highly developed the
D.C. magnetic technique.

Egen and Benson [11] describe some interesting tests on a special pre-
pared rope with prescribed types of imperfections. There were seven types
of faults: 1) splice, 2) 2 to 3 wires filed half-way through, over a length
of about % inch, 3) an added No. 18 AWG wire laid into groove of core, 4)

spike inserted into core and wires were spread apart, 5) 3 wires of 2 inch
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length were removed from the core, 6) one wire in core was cut and 7) a
two inch length of core was removed. Using three D.C. devices (the Polish
MD-8 Defectoscope, the Swiss PMK-75 Kundig device and the Canadian Rotesco
device). None of these devices detected fault No. 6 and the Kundig device
did not detect fault No. 2. Otherwise, all other faults were detected by
all three instruments. The results indicated that, for the rope tested
(i.e. 7/8 inch diameter, 6 x 25, FW, RLL, FC, XIPS), each instrument observed
about the same magnetic field variations. The very similar performance of
these three instruments is probably a consequence of the basic similarity
of the operating principle of each of these D.C. devices. It is a pity
that the A.C. Rotesco device was not tested on the same rope.

Bergander [12] International, Inc. describes the Polish D.C. magnetic
device for NDT of wire ropes known as the Defectograph MD-8 that he developed
with Dr. J. Stachurski. The rope being tested moves through the permanent
magnet which is magnetized to its saturation point. He claims that a 0.27%
change of the rope cross-section can be detected via a measurement of the
external magnetic leakage field. The e.m.f. induced in the search coil
can also be compensated for changes in the rope speed. Using an empirical
approach the probe coil response is related to such parameters as the loss
of cross section of the rope, the length over which the loss occurs and the

radial location of the internal flaw.

EARLY THEORETICAL INVESTIGATIONS

Hochschild [13] gives a review of papers by Iorster [14-18] and pre-
sents some useful plots of the current density in conducting cylinders for
A.C. excitation by a solenoidal coil. He points out that no matter how

carefully the test coil system is designed, small defects will go undetected



unless the response time of the instrument is less than the time taken from
the defect to pass through the effective region of the coils. For example,
a localized defect passing through at 0.03 inch wide differential test coil
at 100 feet per minute will not be detected unless the response extends up-
wards to at least 200 Hz. A common limitation on bandwidth is the ink-pen

recording devices, whose frequency response seldom exceeds 200 Hz.

McClurg [19] also exhibits some of the results of Forster and colleagues
in graphical form. 1In particular, he shows that the impedance variations of
solenoids (i.e. feed through coils) encircling cylindrical conductors that
have surface and sub-surface cracks. The empirical data used are from
Forster's papers. McClurg discusses the application of these eddy current
techniques to metal cutting operations where such things as uniformness of
the hardness is desirable.

Graneau [20] introduces the interesting concept that induced currents
in a conductor, flowing along closed curves, can be represented by a number
of filamentary circuits. These currents and the energizing current can
then be deduced in principle from a system of circuit equations with self
and mutual inductances that are postulated from the physics of the problem.
Using somewhat heuristic reasoning, Graneau obtains an expression for the
current anywhere in the metallic object by infinite series of increasing
powers of the energizing frequency. The coefficients are undetermined
functions of the filament circuit resistance, and mutual inductances between
the filaments. He concludes that there is a clear division between quan-
tities depending on geometry and properties. As a consequence, the induced
currents can be expressed as an explicit function of frequency. This is
really quite strange since exact solutions of idealized forms such as layered

cylinders with external dipole excitation do not exhibit this behavior [21-25].
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RELATED INVESTIGATIONS IN GEOPHYSICAL PROSPECTING

Electromagnetic methods of non-destructive testing of solid conductors
are closely akin to techniques that are now used in geophysical prospecting
for metallic ore bodies [21-34]. It is unfortunate that these two groups
have had little interaction. This writer was involved in the theoretical
developments in multi-frequency and transient electromagnetic methods in
geophysical exploration. 1In fact, as long ago as 1950 it was proposed that
conductivity and permeability of a spherical ore body could be ascertained
from its electromagnetic response in either the frequency or its time domain.
A similar analysis was carried out for a cylindrical ore body with a speci-
fied conductivity and permeability. The basic concept was that geometrical
configuration of the source and receiver coils with respect to the target
could be arranged to have a negligible effect of the determination of ore
body size, conductivity and permeability. The subject has advanced consider-
ably since those "early days" and modern accounts are published regularly
in Geophysics, the journal of the (U.S.) Society of Exploration Geophysicists

and Geophysical Prospecting, the journal of the European Society of Geophy-

sical Exploration.

The work that is relevant to the electromagnetic probing of wire ropes
is the analysis of a homogeneous conductive and permeable cylinder of infinite
length. 1In an "early" paper [22], a general solution was given for the total
fields produced when a line source or current-carrying cable was located
parallel to the cylinder. Aun ecxact two-dimensional solution was obtained
using a wave impedance approach. The low frequency version of the general
solution was expressed in a quasi-static form and numerical results for the

Eifffed dipole term were given. Some examples are shown in Figs. 7 and 8
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for the induced magnetic dipole responses of sbheres and cylinders. In

each case the ordinates are proportional to the induced dipole moment.
Strictly speaking, the monopole term should also be considered when dealing
with cylinders that are effectively infinite in length. This type of analysis
was later extended to dipolar excitation of the infinite cylinder when again
the monopole or azimuthally independent induced current was not considered

in the numerical examples [22].

Further work on this subject was carried out by David A. Hill and the
writer [30] where more realistic situations were treated such as the excita-
tion of a conductive cylinder of finite length by an external magnetic dipole
where all significant induced monopole, dipole, and multipole contributions
were retained in the calculations. The analytical and numerical techniques
used in these papers would seem to be applicable in a quantitative analyses

of electromagnetic non-destructive testing of solid conductors.

MORE RECENT ANALYTICAL STUDIES

Vein [35] points out, what is usually accepted, that the mutual imped-
ance between two closed circuits is dependent on conducting solids in the
immediate environments. He promotes the concept of transfer impedance but
feels i1l at ease in relating this to the reciprocity theorem for generally
continuous media. With this motivation, he works through the analytical
details of a number of classical problems such as the mutual impedance be-
tween coaxial circular loops in the presence of planar, cylindrical, and
spherical conductors. He assumes, without really providing a justification,
that azimuthal symmetry prevails in each case. No real harm is done, however,

since no numerical results of any kind are provided. The derivations seem

to be unnecessarily Complicated and » €ven then, reliance is made on formulas
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quoted from exercises in W.R. Smythe's [36] classic text.

Burrows [37], in a significant thesis, exploits the reciprocity theorem
in eddy-current testing and the subsequent development of a flaw-detection
theory. He is very quick to recognize the limitations of quasi-static theory
such as assumed by Vein [35]. But it should be stressed immediately that
Burrows actually assumes azimuthal symmetry of his detection coils even
though the "flaws" may be asymmetrical. This is a valid procedure but it
appears that some fundamental information is lost when both the source and
the probe coil fully encircle the cylindrical sample. Burrows represents
internal flaws in terms of induced electric and magnetic dipoles that, in
turn, produces the secondary influence. He also provides some very useful
tabulations of the infinite integrals that describe the internal fields
within both solid cylindrical and tubular samples of circular cross sections
for azimuthally symmetric excitation. These same integrals can be used to
predict the response in a corresponding azimuthally symmetric detector coil
due to an internal (small) flaw. Actually, this same approach has been
followed up very recently by Hill and Wait [38] who did not restrict the
results to azimuthal symmetry of the probe coil.

Dodd, Deeds and Luquire [39] have obtained integral solutions for the
vector potential produced by a circular coil for a number of different geo-
metrical configurations. The solutions are limited to axial symmetry. In
calculating the exciting fields of a rectangular cross-section circular
coil, they assume that a straight-forward superposition of current over the
cross-section is valid. This is a quasi-static assumption that probably

needs to be investigated, particularly when the coil of finite width and

length encircles a highly conducting cylinder.
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Dodds et al quote Burrows' [37] formulation for deducing the secondarv
induced voltages due to a defect or flaw in an adjacent conductor. Here
they write down a formula for the defect-produced voltage, induced in coil
2, by a current in coil 1 in terms of the electric and magnetic scattering
matrices for an electrically small defect.

In the same paper, Dodds et al give explicit solutions in integral
form for the rectangular cross-section coil located over a two-layer planar
conductor. Actually, the form of these solutions are very similar to
earlier investigations of electromagnetic induction in layered models of
the earth's crust. The NDT community is apparently not aware of this ex-
tensive literature. An example is the book by Keller and Frischknecht [40]
that reviews the current status of such problems at least up to 1965. Of
course, Dodds et al give the explicit form of the fields of a circular coil
with rectangular cross-section, while the geophysicists restrict their
attention to small loops. Dodds et al also gives solutions for various
combinations of pick-up coils and the corresponding secondary effects due
to embedded defects that can be characterized by the polarizability matrices
mentioned above.

Cheng, Dodds and Deeds [41] have presented a general formulation for
the time-harmonic eddy currents, produced by a circular coil of rectangular
cross—-section, for a underlying planar conductor of any number of layers.
The integral solutions obtained in a straight—forward fashion yield alge-
braically complicated results. A number of these results could have been
obtained by using impedance methods based on analogies with transmission

line theory (see for example [42] and [43]).
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Dodd, Cheng and Deeds [44] give a formal vector potential solution to
a coil coaxial with any number of cylindrical conductors. While they state
the derivation is quite general, the solution is only carried through for
complete symmetry about the common axis.

Dodd and Deeds [45] give the same solutions for a uniform coil with
uniform A.C. current excitation over a two layer planar conductor. They
then repeat the solution for the coil encircling a two-~layer cylindrical
conductor of infinite length. A single numerical example is given for the
normalized impedance of the coil as over the two-layer planar structure
that exhibits the effect of the thickness of the upper layer.

Kahn et al [46] present an interesting analysis of how eddy currents
in a solid conductor are diverted around a surface crack. One of the basic
assumptions is that the magnetic field tangent to the surface is a constant
even in the presence of the crack. They also present solutions for diffrac-
tion by a semi-infinite crack (i.e. a half-plane) in an otherwise infinite
medium. Neither of these solutions are '"rigorous" as claimed by the authors
but the results do provide considerable insight into how defects, of other
than infinitesimal size, will modify to external fields. Kahn and Spal
[47] have also presented some results for the calculations of eddy currents
in a long cylinder with a radial crack at the surface. Details of the
analytical method are not yet available but presumably the approach is
similar to that used in treating the surface crack in the planar conductor.
It is appropriate to call attention to the close similarity of such problems
to earlier theoretical studies in geophysics where one is interested in
the perturbation of time-varying geomagnetic fields near coastlines [48]

and other laterally varying features in the earth's crust [49].
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AN ALTERNATIVE FORMULATION FOR SOLENOID EXCITATION

As we have indicated, a commmon method of non-destructive testing
(NDT) of metal rods and tubes is to induce eddy currents by means of an
encircling solenocid carrying an alternating current. The impedance of the
solenoid is related to the cross-sectional area and the electrical proper-
ties of the sample. A formula for this impedance was obtained by Forster
and Stambke [16] on the assumption that end effects could be ignored. Also,
they assumed that the cylindrical sample was centrally located within the
solenoid. The same derivation was essentially repeated by Hochschild [13]

and Libby [51].

A feature of the Forster-Stambke derivation is that the effect of
the air gap is introduced in a somewhat heuristic fashion wherein
the field in this concentric region is assumed to be the same as the one
for the empty solenoid. We feel it is worthwhile to provide a more general
derivation of the impedance formula. We also show it applies to the case
of a non—conceqtric air gap. Finally, we mention the relevance of the
current analysis to the dual problem where the cylindrical sample is ex-—

cited by a toroidal coil.

To simplify the discussion, we consider first the concentric air gap
model with a homogeneous cylindrical sample of radius a with conductivity
0 and magnetic permeability u. The situation is indicated in Fig. 9 where
thé solenoid of radius b encloses the éample, both of which are assumed to
be infinite in length. Our objective is to find an expression for the
impedance of the solenoid per unit length since this is the basis of the

NDT eddy current methods that are commonly used.
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In terms of cylindrical coordinates (p,¢,z), the only component of
the magnetic field is Hz since the exciting current in the solenoid is
uniform in both the axial and in the azimuthal direction. Within the

sample, Hz satisfies the Helmholtz equation
(V* - y*)H, =0 (1)

where Y2 = jopw and where we have adopted a time factor exp(iwt). Here
w 1is the angular frequency that is sufficiently low that displacement cur-
rents in the sample can be neglected. If not, we merely replace ¢ by

0 + iew where € is the permittivity. Also, it goés without saying that
the field amplitude 1is sufficiently small that non-linear effects can be

ignored.

For the highly idealized situation described, we can immediately write

H = AIO(YD) (2)

for p < a where I0 is a modified Bessel function of argument 7Yp and
where A 1is a constant. From Maxwell's equations the azimuthal component
of the electric field is

E¢ = —(1/0)3HZ/30 = -A(y/0)1, (vp) (3)

also for p < a. Now we can immediately form an expression for the

"impedance” z, of the cylinder:

z, = [—E¢/Hz]p=a = nI, (ya) /T (ya) %)

where 1n = Yy/0 = (:'mw/c)lﬁ is the intrinsic or wave impedance of the sample
material.
Now, for the air gap region a < p < b , we write corresponding field

expressions
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H, = BIO(Yop) + CKO(Yop) (5)

and
Eo¢ = —Bnoll(Yop) + CnoKl(Yoo) (6)

where B and C are constants and where n, = Yo/(ieow) = (110/60)1/2 = 120w
in terms of the permittivity €, and permeability Mo of the air region.
Here and in the above, the Bessel function identities BIo(x)/Bx = Il(x)
and BKo(x)/Bx = —Kl(x) have been employed.

Compatible with the requirement that tangential fields must be con-

tinuous at p = a we can write

[Eo¢ + ZCHOZ] =0 €))
p=a
This immediately tells us that
noll (Yoa) - ZCIO(YOa)

(8)
noKI(Yoa) + ZcKo(Yoa)

¢ .
B

In the external region p > b , the field expressions must clearly
have the form:

H
oz

DKO(YOp) (9)

|

E s = DnoKl(Yop) (10)

where D 1s another constant.
Now the solenoid current is idealized as a continuous current distri-

bution jo amps/m in the azimuthal direction defined such that

Lim {Hoz(p=b+A) - H_ (p=b-8) = -j (11)
A~>0 _ _ _
E0¢(p—b+A) - Eoé(p—b-A) =0 (12)
Application of these conditions immediately leads to
D =C - I,(y_b)B/K, (Y b) (13)

and

=
|

= 3,Y DK (v b) 14)
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Among other things, this tells us that the magnetic field external to the

solenoid (i.e. p > b) has the form

B, = {-B[1, (v b) /R (v D) ] + CIK (v p) (15)

The quantity of immediate interest is the impedance Z of the solenoid

itself. Clearly, within the limits of our basic assumptions,

Z = const. X Eo¢(p=b)/jO (16)

The corresponding impedance of the empty solenoid is denoted Zo. Thus,

it follows that

. c Kl(Yob)

Z
- =1- o (17)
Z0 B Il(yob)

which is explicit since C/B 1is given by (8).

We now can simplify the impedance ratio formula if we invoke the small
argument approximations for Bessel functions of order Y2 and Yob. That
is, we use Io(x) =1, Il(x) » x/2, Ko(x) = ~logx and Kl(x) = 1/x. This

exercise leads to

e

a2 o w2t 2 DO rex
By p2 Ya I (ya) Z, (18)

z
zo
where no restriction has been placed on the magnitude of <Yya. Here R and
X denote the resistance and reactance, respectively.

The formula for Z/Zo given by (18) is in agreement with Forster and
Stambke [16] (if one remembers they used the old German designations JO
and Jl for modified Bessel functions). Forster and Stambke [16], Hochschild
[13] and Libby [51] present extensive numerical data for this quasi-static

approximation to Z/ZO in Argand diagrams in the complex plane for various

values of ]Ya] and u/uo. Two examples, using dimensionless parameters,
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are shown in Figs. 10 and 11 when the ordinates and abscissae are normalized
by XO which is the reactance of the empty solenoid. That is, we assume
20 = iXO corresponding to negligible ohmic losses in the solenoid itself.
The real parameter o is defined by o = ya exp(-im/4) = (Ouw)%a. In Fig.
10 the sample radius b is assumed to be the same as the sample radius a
(i.e. no air gap). Different values of the magnetic permeability are
shown. Not surprisingly, when o 1is small, R vanishes and X/XO
tends to u/po. However, in general, the eddy-currents have the effect
of reducing X/X0 , which is the effective flux, and to introduce a resis-
tive portion R/Xo’ In Fig. 11, the relative permeability of the sample
u/uo.= 1 but the filling factor a?/b? assumes different values. The
results indicate that the presence of the air gap reduces the sensitivity
of the device for probing the conductivity but the effect is predictable.
Actually, if o is sufficiently small (i.e. ]Yal << 1), (18) reduces
to

z/Z_ = X/X_ =1+ (a2/b2)[u/uo - 1] (19)

which is consistent with the curves in Figs. 10 and 11. 1In this D.C. limit
the results only depend on the magnetic permeability of the sample.

The formal extension of the theory to the case where the excitina

solenoid is no longer concentric with the cylindrical sample can also be

dealt with. The situation is indicated in Fig. 12. As before, cylindrical

coordinates (p,$,z) are chosen co-axial with the sample. But now, the

shifted coordinates (p',¢',z) are chosen to be coaxial with the exciting

solenoid. The shift is P, as indicated in Fig. 12 where we do impose the

rather obvious physical restriction that b > p + a. We may show that the
o

field in the non-concentric air gap has the form [50]
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o0

400
H = BI ")+ ' -1"
oz oYoP") mim Cmr,:zw Kon (YoPL (Y p ) (-1) e

-i(n+m)¢'

(20)

This is valid in the non-concentric air gap region (i.e. p > a and p' < b).

The needed azimuthal component is obtained from
= '
Eo¢. N oH /3¢y p") (21)

The relevant quantity for the impedance calculation is the "average' field
E0¢, at the solenoid. Then it follows that the impedance Z per unit
length of the solenoid with the sample divided by the impedance ZO of the

empty solenoid is given by

K,(y b) C

Z 1Yo m m
= =1- ———— ) e — (1)L (yo0) (22)
ZO Il(y b) 2o ™ B m 'o o

where e, = 1 and € = 2 for m# 0 and where Cm/B is known [50].

Not surprisingly, (22) reduces to (17) for the centrally located sample,A
i.e. Im(yopo) =0 for Py~ 0 when m # O.

We again may invoke the small argument approximations for Bessel
functions of order yoa, yob, and YoPo Lo and behold, these show that
Z/ZO reduces again to the formula given by (18). This confirms the con-
jecture of Forster and Stambke [16] who seemed to be gifted with keen
physical insight into such problems. Of course, we do not expect the
result to hold in any sense when the dimensions of the solenoid become
comparable with the free-space wavelength. 1In that case, many other com-

plications arise such as the assumed uniformity of the solenoid current.

THE DUAL PROBLEM

There is an extremely interesting dual to the problem we have dis-
cussed. That is, rather than exciting the cylindrical sample with an

azimuthal electric current, we employ an azimuthal magnetic current. This
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is an 1dealized representation for a thin toroidal coil but, again, it
effectively is of infinite length in the z or axial direction. The assumed
source discontinuity is now in the electric field at p = b which has only
a z component. The much more ccmplicated case of the toroidal coil of
finite axial extent was analyzed recently [53].

Under the present assumption of axial uniformity, the admittance Y
per unit length of the toroid is the dual of the impedance Z of the solenoid
discussed above. Thus, all the earlier equations apply if we make the

1

- i - -1
following transformations: ijw - o, H > €, N >n -, N, > no . Hz > Ez’

E¢ > -H¢, Hoz > Eoz’ and Equ - _Ho¢' Then the dual of (18) is the ratio

of the admittance Y of the toroidal coil with the sample to the admittance

Yo without the sample. It is written explicitly

2 .2 I, (ya)
[1_ a o 2> 2 h ] (%)

Y
Y; p2 e ;;‘?5’?;??27
for the case where IYObI << 1. That is, the radius of the toroidal coil

gshould be much smaller than the free-space wavelength. Also, in full anal-
ogy to the earlier discussion, the quasi-static result holds for any loca-

tion of the cylindrical sample within the toroid. Furthermore, in the low

frequency limit where IYaI =g << 1, we see that

~ 2 /1.2 .
Y=y [1+ @/H)[(0/iew - 11] (24)
which depends only on the conductivity of the sample. Thus this type of

excitation should be preferred with probing the effective conductivity in

the axial direction in the sample.
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THE PROLATE SPHEROIDAL VOID MODEL OF HILL AND WAIT

As we have indicated, an appropriate source for excitation of axial
electric currents is a toroidal coil which encircles the rope, and a mag-
netic current model for the toroidal source coil has been analyzed [53].
Expressions for both the interior and exterior fields were derived for a
homogeneous wire rope. As we shall outline here, the presence of a small
slender void within the rope can be treated. Such a void can be considered
a model for a broken strand. The void is also allowed to be oriented at
any arbitrary angle to the rope axis to account for the winding geometry
of the wire rope. The induced electric and magnetic dipole moments are
computed from the primary fields and the electric and magnetic polarizabili-
ties of the void. We then obtain expresssions for the external fields of
electric and magnetic dipoles of arbitrary orientation. Of course, it is
these external fields which are the observable quantities in any EM non-
destructive testing method. The particular expressions, derived for the
external fields of internal electric and magnetic dipoles, should be useful
in future analyses of other types of small imperfections in wire ropes.

Of course, in such cases, the electric and magnetic polarizabilities would
be different.

In a previous analysis [53], we analyzed an azimuthal current sheet
source which encircled the rope. The current sheet was allowed to have
arbitrary width in the z or axial direction and arbitrary azimuthal extent.
This source results in fairly complicated expressions for the electric and
magnetic fields. Since, in this paper, we are primarily concerned with the
fields scattered by the void, we take the simpler special case for the source

shown in Fig. 13. Specifically, a magnetic current ring of strength K is
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located at a radius b in the plane 2z = 0. This is a model for a thin
toroidal coil which completely encircles the rope. The rope is assumed
to be infinitely long and has radius a. It has conductivity Ow , per-—
mittivity €y and permeability U The surrounding free space has per-
mittivity €, and permeability Mye For now, we defer discussion of the
vold properties and consider only the homogeneous rope.

Because of the symmetry of the source and the rope, the fields are T

(Transverse Magnetic) and independent of ¢. The magnetic field has only

pr
H
¢

, . r
zero axial and radial components EE and E

a nonzero azimuthal component , and the electric field has only non-

pr The superscript pr de-

notes the fields in the absence of the void. These primary fields are

derived elsewhere [53], and the explicit forms both inside and outside the

rope are given in Appendix A of a recent report [38]. We note that gP"
pr pPr . .
and H¢ are zero for p = 0. On the other hand, Ez is nearly inde-

pendent of p inside the rope for sufficiently low frequencies.

We now select a thin prolate spheroid of conductivity Ov , permitti-
vity EV , and permeability Uv in order to model a broken strand. The
prolate spheroidal shape is a convenient one because its electric and mag-
netic polarizabilities are known. However, we would not expect a signifi-
cant difference for a thin circular cylinder of the same length and volume.
To account for the winding geometry of the rope, we allow a rotation of the

major axis of the spheroid about the p' axis by an angle «o. Thus, the

major axis is oriented at an angle o to the unit vector z' and an angle

m/2 + o to the unit vector $' as indicated in Fig. lc.
Since the void has a contrast in both the electric and magnetic proper-
ties, both electric and magnetic dipole moments will be induced [36]. The

electric polarizabilities for the incident electric field applied along the
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major axis, ae . , or along the minor axis, ae. , are given by
maj min
af | = -V(o -0 ) (25)
ma j w oV

and

i _ —2V(OW—OV) (26

min 1+0 /g ’

viTw

where V 1is the volume of the thin prolate spheroid. Since we anticipate
the use of very low frequencies, we have neglected displacement currents.
To include them, Gw would be replaced by O, + iwew, and o, would be

replaced by 9, + iwsv in (25) and (26). The magnetic polarizabilities

for the incident magnetic field applied along the major axis, agaj , Or
along the minor axis, azin , are similarly given by
o = -Viw(u -u ) (27)
maj uw uv
and
=2Viw(u -u )
o v Y (28)

min 1 + pv/pw
In order to compute the induced dipole moments, it is first necessary

to resolve the incident electric and magnetic fields into components along

the major and minor axes. The resultant induced dipole moments can then

be resolved into the more convenient p, ¢, and =z components. When this

is done, the induced electric dipole moments are found to be

= PPY (A€ 2 e 2
(Ids)z Ez (amaj cos‘a + @ 0 sin®a) , (29)
(Ids)¢ = Egr(aiin - asaj)sinacosa . (30)
_ Pr e
(Ids)p Ep amin (31)

In (29)-(31), the primary electric field components Ezr and Egr are

'

evaluated at p', ¢', z Similarly, the induced magnetic dipole moments
y

are found to be
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(I(dSZ,)z = ng(ar;in - azaj)sinacosa s (32)
(Kd)y, = ng(“:\inc"szo‘ + o, gsin’e) (33)
(KdSZ,)p =0 . (34)

Note that the units of the induced electric dipole moments in (29)-(31l) are
ampere meters, and the units of the induced magnetic dipole moments in (32)
through (34) are volt-meters. These induced dipole moments are the sources

of the scattered field.

The scattered field external to the rope is the observable quantity
in any NDT system. Since we anticipate the use of coils for sensors, we
have considered the scattered magnetic field components HZC(Q’¢’Z)’
Hzc(p,¢,z), and H:C(p,¢,z) [38]. Each of these components can be
written as a superposition of the contributions frow each of the six in-
duced dipole sources. (Actually, there are only five nonzero sources since
(Kdﬂ)p is zero for the specific configuration considered here). Explicit
expressions for the three scattered field components are given elsewhere
[38].

The quantities of most interest in NDT are the external (p>a) mag-

netic field components which are observed with the sensing coils. The

pPr
H
¢

magnetic field has all three components. For the numerical results, the

primary magnetic field has only a ¢ component but the scattered

following parametric values remain fixed: a = 1 cm, Ow = 1.1 x 10°mho/m,
= 9 = ~ = = > = =

Uw 200 Uo’ b 2 cm, frequency 10 Hz, p 2 cm, ov 0, and Uv uo.

For this low frequency, the conduction currents dominate, and the permitti-

vities € and g, are unimportant. The above values of Ow and My,
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are roughly representative of stainless steel, but the permeability of steel

is quite variable [54]. For the above parameters, the radius a is approxi-

mately one skin depth. For convenience here, we also choose z = z' = 0

and ¢' = 0.

/,

In Figs. 14, 15, and 16, we show the magnitude of the scattered mag-

pr
¢

son for showing the ¢ dependence is that, although the primary field is

netic field components normalized by VH as a function of ¢. The rea-

independent of ¢ , the scattered field varies considerably in ¢. This
variation might dictate the use of multiple sensing coils spaced in azimuth
around the rope. The curves are normalized by the primary field because the
anomalous scattered field is measured in the presence of the primary field
and their ratio is thus of interest. We also normalize the results to the

volume V of the void in order to make the curves more general. However, a

/

typical value for V might be on the order of 10=%m3 (=1 ecm X 1 mm X 1 mm).

As indicated in Figs. 14 and 15, H;C and H® are of approximately the

¢

same level, but H;C is odd in ¢ while 1% is even. We also may note

¢
the decrease in scattered field as the void is moved from the outer region
(p'/a = 0.9) toward the center (p'/a = 0.1) of the rope. Because o = 0°
in Figs. 14 and 15, only the axial and radial electric dipole moments and the
azimuthal magnetic dipole are excited. Also, the radial electric dipole is
very small because its exciting field Egr is small. The calculations
reveal that (Ids)Z and (Kd£)¢ contribute approximately equally to the
scattered field. 1In Fig. 16, we have z = z' =0 and p'/a = 0.5, but

we allow a to vary from 0° to 30°. Nonzero values of a allow two addi-

tional dipole moments (the azimuthal electric and the axial magnetic dipoles)

sc

¢

to be induced. The result is a decrease in the level of H and HZC
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and an increase in the level of Hzc. These new results are described
elsewhere [38].

The phase of the scattered field was also computed, but was found to
be of less interest. Also, the individual dipole contributions were com-
puted, and they are of individual interest since they will be excited
differently for other sources or other void configurations.

Although we have generated numerical results for the specific case of
a thin prolate spheroidal void, the formulation given here actually yields
the external fields for arbitrary induced electric and magnetic dipole
moments. Thus the formulation is useful for any type of rope imperfection
that can be characterized by induced electric and magnetic dipole moments.
This requires only that ‘the rope imperfection be small in terms of the rope
radius and the rope skin depth. Larger imperfections should have a similar
qualitative behavior, but could probably be rigorously analyzed only by
solving an integral equation for the fields in the imperfection. Also,
it would be a simple matter to perform similar calculations for a solenoidal
coil of the type used in present NDT systems. The scattered field calcu-
lation remains unchanged, but the primary field would be TE(EIZ)r = 0)
rather than TM(HIZ)r = (). Some calculations for this case have been carried
out by Burrows [37] for the special case where both exciting and sensing

coils are coaxial with the tubular specimen.

CONCLUDING REMARKS

We have attempted to give an overall view of NDT electromagnetic
methods. As indicated, the investigations have proceeded along different
lines. The very practical and perhaps most useful work to date has been

empirical in nature. There has been no attempt made to deduce the magni-
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tude of the secondary fields due to the internal flaw; instead a large
number of actual ropes are tested and the results presented. On the

other hand, the analytical approaches have considered only highly idealized
situations. Nevertheless, some important principles are disclosed that may
have an important bearing on operating procedures. For example, the
toroidal coil exciter could be utilized in practical schemes in coajunc-
tion with localized sensor coils that can characterize the three-dimensional
field configuration in an adequate fashion.

A basic theoretical aspect of the NDT problem that we have not really
addressed is to account for the aniso“ropic nature of the effective con-
ductivity and the permeability of the wire rope. The spiral construction
of stranded wire ropes sometimes described as a "twisted bunch of spaghetti"
defies any simple microscopic description. However, from a macroscopic
point, we might describe the effective anisotropy by conductivity and
permeability tensors. Some preliminary efforts in this direction have
begun [55]. It is obvious that much remains to be done and we have ad-

dressed some of these topics in the subsequent sections.



[1]

[2]

[3]

(4]

[5]

(6]

[7]

(8]

[9]

[10]

35

REFERENCES

T.F. Wall, "Electromagnetic testing for mechanical flans in steel wire
ropes", J. Inst. Elect. Engrs., vol. 67, pp. 899-911, 1929.

T.F. Wall and C.H. Hainsworth, "Ihe penetration of alternating magnetic
flux in wire ropes", J. Inst. Elect. Engrs., vol. 71, pp. 374-379, 1932.
A. Semmelink, "Electro-magnetic testing of winding ropes", Trans. of the
South African Institute of Electrical Engrs., vol. 43, no. 5, pp. 113-129,
May 1953.

A. Semmelink, "Electromagnetic testing of winding ropes', Trans. of the
South African Institute of Electrical Engrs., vol. 47, No. 8, pp. 206-244,
Aug. 1956.

R.H. Hiltbrunner, "Le Controle Magnétique des cibles avec le défectoscope
integra", Eeonomie et Technique des Transports, no. 119, June 1957.

J.G. Lang, "The principle and practice of electromagnetic wire rope
testing", Canadian Mining and Metallurgical Bulletin, pp. 415-424,

April 1969.

C.H. Larsen, P.A. Egen, R.D. Jones, and H.A. Cross, "Wire rope applica-
tions and practices associated with underground coal mining in the U.S.",
Final Report (from Eattelle Laboratories) on U.S. Bureau of Mines Con-
tract No. HO101741, 22 June 1971.

J.P. Morgan, "Investigations on wire ropes in mine hoisting system", Proc.
Australian Inst. of Min. and Metal, no. 215, pp. 59-85, 1965.

J.P. Morgan and H.E.J. Symes, "Non-destructive testing of wire ropes'",
Bulletin No. 6, Australian Mineral Industries Research Assoc. Ltd.
(National Library of Australia Card No. ISSN 0313-6973), 1976.

J. Stachurski, "Magnetic testing of steel wire ropes', Report from
Laboratory for Testing Wire Ropes, University of Mining and Metallurgy,

Cracow, Poland, 1976.



36

[11]

[12]

[13]

[14]

[15]

[16]

[17]

R.A. Egen and D.K. Benson, "Wire rope retirement criteria and procedures",
Progress Report No. 16 (from Midwest Research Inst., 425 Volker Elvd.,
Kansas City, MO 64110) on U.S. Bureau of Mines Contract No. J0155187,

10 Nov. 1976.

M.J. Bergander, "Principles of magnetic defectoscopy of steel ropes',

Paper presented at 47 Annual Convention of the Wire Association, Boston,
November 1977.

H. Hochschild, "Electromagnetic methods of testing metals', Progress

in Non-Destructive Testing, vol. 1, pp. 59-109, The Macmillan Co., New
York, 1959.

F. Forster, "Theoretical and experimental foundation of non-destructive
testing using eddy currents I. Test coil Methods'", Zeitschrift Metallkunde,
vol. 43, no. 5, pp. 163-171, 1952 (in Gefman).

F. Forster and H. Breitfeld, '"Non-destructive testing using eddy current
methods II. Practical results and industrial applications of methods

using test coils", Zeitschrift Metallkunde, vol. 43, no. 5, pp. 172-180,
1952 (in German).

F. Forster and K. Stambke, "Theoretical and experimental foundation of
non-destructive testing using eddy currents III. Quantitative methods

of non-destructive testing using test object encircling coils", Zeitschrift
Metallkunde, vol. 45, no. 4, pp. 166-179, 1954 (in German).

FF. Forster, "Theoretical and experimental foundation of non-destructive
testing using eddy currents IV. Practical apparatus for non-destructive
testing using encircling coils for eddy currents', Zeitschrift Metallkunde,

vol. 45, no. 4, pp. 180-187, 1954 (in German).



[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

37

F. Forster and H. Breitfeld, "Theoretical and experimental foundation
of non-destructive testing using eddy currencts V. Quantitative testing
for cracks in metallic objects using test object encircling coils",
Zeitschrift Metallkunde, vol. 45, no. 4, pp. 188-199, 1954 (in German).
G.0. McClurg, "Non destructive eddy current testing", IRF Trans., vol.
IE-11, no. 1, pp. 20-26, 1959.

P. Graneau, '"Coupled circuit theory for electromagnetic testing',
Progress in Non-Destructive Testing (ed. by E.G. Stanford and J.H.
Fearson), vol. 2, pp. 163-188, 1961.

J.R. Wait, "A conducting sphere in a time varying magnetic field",
Geophys., vol. XVI, pp. 666-672, Oct. 1951.

J.R. Wait, "The cylindrical ore body in the presence of a cable carry-
ing an oscillating current", Geophys., vol. XVII, pp. 378-386, April
1952. [In eqn. (13), replace uz/ul by nuz/ul both in the numerator
and denominator, similarly, in (14), replace (k*n) by n(k*tl). Also,
the summations in (66), (67), etc. should include the n = 0 terms].
J.R. Wait, "A conducting permeable sphere in the presence of a coil
carrying an oscillating current", Can. J. Phys., vol. 31, pp. 670-678,
May 1953.

J.R. Wait, "Some solutions for electromagnetic problems involving
spheroidal, spherical and cylindrical bodies", J. Res. NBS, vol. 64B,
pp. 15-32, Jan./Mar. 1960.

S.H. Ward and D.C. Fraser, "A conducting permeable sphere and cylinder
in an elliptically polarized alternating magnetic field", J. Geomag.

and Geoelectricity, vol. 18, no. 1, pp. 23-41, 1966.



38

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

S.H. Ward, "The electromagnetic method", Mining Geophysics, vol. 1I,
pp. 224-372, Oct. 1967 [Ward's quasi-static solution, Sec. 7a, does
not include the effect of the induced monopole or azimuthally invar-
iant currents, i.e. the n = 0 terms are missed].

S.K. Singh, "Transient electromagnetic response of a conducting infin-
ite cylinder embedded in a conducting medium", Geofisica Internacional
(Mexico), vol. 12, no. 1, pp. 7-21, 1972.

S.K. Singh, "Transient electromagnetic response of a conducting cylin-
der in a conducting medium: numerical resutls', Geofisica Internacional
(Mexico), vol. 12, no. 4, pp. 267-280, 1972.

Von J. Meyer, "Uber die Richtungsveranderlichkeit des geomagnetischen
Induktionspfeiles bei endlicher Leitfahigkeit", Zeits. fur Geophysik,
vol. 38, pp. 195-221, 1968.

D.A. Hill and J.R. Wait, "Electromagnetic response of a conducting
cylinder of finite length", Geofisica Internacional (Mexico), vol. 12,
no. 4, pp. 245-266, 1972.

J.R. Wait, "On the electromagnetic induction in elongated ore bodies",
Geophysics, vol. 38, no. 5, pp. 984-985, 1973. Correction: vol. 39,
no. 2, p. 235, 1974.

W. Kertz, "Leitungsfﬁhiger Zylinder im transversalen magnetishen
Wechselfeld, (erl. Beitr. (ieophys., vol. 69, pp. 4-28, 1960.

S.H. Ward, 'Unique determination of conductivity susceptibility, size
and depth in multi-frequency electromagnetic exploration", Geophysics,
vol. 24, no. 3, pp. 531-546, July 1959.

J.R. Wait, "Electromagnetic coupling between a circular loop and a

conducting sphere'", Geophysics, vol. 18, pp. 970-971, Oct. 1953.



39

[35] P.R. Vein, "Inductdnce between two loops in the presence of solid con-
ducting bodies", J. Electronic Control, vol. 13, no. 5, pp. 471-494,
1962.

[36] W.R. Smythe, Static and Dynamic Electricity. New York: McGraw-Hill
Book Co., 1950, 2nd Fd. (Third revised edition now available).

[37] M.L. Burrows, "A theory of eddy-current flaw detection', Ph.D Thests,
University of Michigan, 1964 (available from Univeristy Microfilms,
Ann Arbor, MI, Order No. 64-12,568).

[38] D.A. Hill and J.R. Wait, "Scattering by a slender void in a homogeneous
conducting wire rope", Applicd Physics, vol. 16, 391-398 (and, by same
authors, "Electromagnetic field perturbation by an internal void in a

conducting cylinder excited by a wire loop", Applicd Physics, in press).

[39] C.V. Dodd, W.E. Deeds, and J.W. Luquire, "Integral solutions to some
eddy current problems", Int'l. J. of NDT, vol. 1, pp. 29-90, 1969/1970.

[40] G.V. Keller and F.C. Frischknecht, Electrical Methods in Geophysical
Prospecting. NewYork: Pergamon Press, 1966.

[41] C.C. Chang, C.V. Dodd, and W.E. Deeds, ''General analysis of probe coils
near stratified conductors", Int'l. J. of NDT, vol. 3, pp. 109-130,
1971/1972.

[42] J.R. Wait, Electromagnetic Waves in Stratified Media. Pergamon Press,
Chap. 2, 1lst Ed. 1962 and 2nd Ed. 1970.

[43] J.R. Wait, "Fields of a horizontal dipole over a stratified half-space",
ITEEE Trans. Antennas Propagat., vol. AP-14, no. 6, pp. 790-792, Nov. 1966.

[44] C.V. Dodd, C.C. Cheng, and W.E. Deeds, ''Induction coils coaxial with an
arbitrary number of cylindrical conductors', J. Appl. Phys., vol. 45,

no. 2, pp. 638-647, Feb. 1974.



40

[45]

[46]

[47]

(48]

[49]

[50]

[52]

[53]

C.V. Dodd and W.E. Deeds, '"Analytical solution to eddy current probe
coil problems", J. Appl. PI’hys., vol. 39, no. 6, pp. 2829-2838, May 1968.
A.H. Kahn, R. Spal, and A. Feldman, "Eddy current losses due to a sur-
face crack in conducting material', J. Appl. Phys., vol. 48, no. 11,

pp. 4454-4459, Nov. 1977.

A.H. Kahn and R.D. Spal, "Electromagnetic theory and its relationship

to standards", Proceedings of the Workshop on Eddy Current Non-Destruc-
tive Tesiiwy, National Bureau of Standards, Gaithersburg, MD, Nov. 3-4,
1977 (to be issued as an NBS Special Publication).

J.T. Weaver, ''The electromagnetic field within a discontinuous conductor
with reference to geomagnetic micropulsations near a coast-line', Can.
J. Phys., vol. 41, pp. 484-495, 1963.

J.R. Wait and K.P. Spies, 'Magneto-telluric fields for a segmented
overburden', J. Geomag. anl Geoelectricity, vol. 26, pp. 449-458, 1974.
J.R. Wait, "The electromagnetic basis for non-destructive testing of
cylindrical conductors", [FLE Trans. Instrumeniation & Measurement, vol.
IM~27, No. 3, 235-238, September 1978.

H.L. Libby, Introduction to Electromagretic Nondestructive Test Methods.
New York: John Wiley & Sons, 1971, Sec. 5.2, pp. 135-150.

J.R. Wait, Electromagnetic Radiation from Cylindrical Structures. Oxford
and New York: Pergamon Press, 1959.

D.A. Hill and J.R. Wait, "Analysis of alternating current excitation

of a wire rope by a toroidal coil", J. Appl. Fhys., vol. 48, no. 12,

pp. 4893-4897, 1977.



41

[54] A.G. Kandoian, Reference Data for Radio Engineers. New York: ITT Corp.,
1968, pp. 4-32.

[55] J.R. Wait, "Electromagnetic responsé of an anisotropic conducting cylinder

to an external source, Radio Science, Vol. 13, No. 5, 789-792, September/

October 1978.

—+ 20,000
- EXCITATION:
FLUX 2500 AMP-TURNS
DENSITY
DIST.

20 TURNg
SEARCH COIL

\EXCITING COIL

(after Wall 1929)

Fig. la. Sketch of Wall's device (1929), the B-H curve, and

the resulting induced EMF in the search coil.



42

20,000+-

M 5000

>

= /

(7]

Z 10000 Induced EMF

0 in Search Coil

2l for 2430

ip 2090 AMP-TURNS
at 20 Hz.

1 | ] J
© 000 2000 3000 4000

AMPERE TURNS (PEAK VALUES)

B2 B, 20°

L D & M Rqer
) 1 T T T T T T
il i0 S 8 7 %) 5 4 3 2

Distance from end in feet

(After Wall 1929)

Fig. lb. Some data from Wall's test of a locked coil rope. (EMF Waveform
Amplitude not given).



Model Wire Rope

Insulated Individual
Wire Rods of V8 in. dia.

location of embedded
search coil A
(after Wall and
Hainsworfh 1932)

43

P
EMF in A (Flux EMF in C-
in central group) (flux in surface
layer)

- -
EMF in A-B EMF in D
(flux in 2nd layer) (total flux)

S50 Hz

EMF in B-C Exciting \/
(flux in 3rd Current

layer) Waveform, I =54 amps

Fig. 2. Special model of a wire rope used by Wall and Hainsworth
(1932) to study internal fields.



4t

Surface

20000~ layer
* n 3rd layer
2nd
m [ Central group
10,000}~
I
i (after Wall and
- Hainsworth, 1932)
O: | l | |

5 IO 15 20 AMPS.
Peak value of excitation current

Surface
ZOrOOOf' layer
+ i Central group
08 i
AC. excitation
10.000 at 50 Hz.

D.C. excitation

L L L] LI I T

1 | L

5 10 15 AMPS
Peak value of A.C: -

Direct Current ——

Fig. 3. Some measured data for the special wire
rope model.




Fig. 4.

45

Stranded wire rope.

* ,{5 WIRE ROPE
1000 | N
@ B B
\
Mr‘ — ~.D
PHASE | :
SHIFTER after
L | Semmelink
E (1953)
AMPL. RECORD.
PHASE
SHIFTER CRO.



46

OSC.

REFERENCE
VOLTAGE

o I

3

RS Ex

Ex

SCHEMATIC
DIAGRAM

(after Semmelink, 1256)

Fig. 6.

AMPL.

PHASE
SENS.

DET.

DOUBLE
PEN.
RECORD.

PHASOR
DIAGRAM

lmproved model use by Semmelink (1956).



M and N

0.32

0.24
Ol6

0.08

-008

-0O.l6
-0.24 Values of
032 (/Lo shown
. f .
040 (from Wait [953)
-048
N E TN I SR N S N
030612 3 6 12 3060 [50300

(cpw)”2q

Sphere Dipole Response
M + (N

Fig. 7. 1Induced magnetic dipole for a conducting
permeable sphere as a function of its
conductivity O, permeability u, angular
frequency w, and radius a.

47




48

Values of /g shown

Cylinder Dipole Response
R| = P| + LQ|
(from Wait 1952, 1960)

Fig. 8. 1Induced (line) magnetic dipole for a conducting
permeable cylinder.



49

SAMPLE

SOLENOID

Fig. 9. Cross-sectional view of
cylindrical sample located
centrally.

Fig. 12. Cross-section view of the non-
concentrically located sample.



100

80

X/ Xg >

40

20

Vaiues of
Relative
Permeability

/Lo shown

Fig. 10. Argard plot
of the impedance
Z = R + iX normalized
to the reactance Xo
of the empty solenoid,
for a = b.

a = (o*,uw)vzo

Values of
filling factor

a2/b2 shown

Fig. 11. Argand plot
of the impedance
7Z = R + iX normalized
to the reactance XO
of the empty solenoid,
tor y = uo.



51

Void location
(o, ¢, Z)
Observer (p, ¢, z) (€0, Ho)

Toroidal
coil

Rope 0]
(infinite length)

Rope

(O—W’ ew: PW)

Fig. 13. Thin toroidal coil surrounding
a metal rope of infinite length
a) Perspective view, b) Top view,
c¢) Prolate spheroidal void.

Prolate -
Spheroidal Void

(Ov,€v, LLy)
AN

(¢)I



52

SC "ig. 14. The normalized magnitude of the
f{ scattered radial magnetic field
for various void locations p'.

1
i

| %o

u z=2'=0
p7a=09 a=0°
¢'= 0
p=2cm a=lcm b=2cm
o = I.1x 10® mho/m

pw= 200 Lo
f=10 Hz

N SN M B
L

B |
©
-~

|

O.l

0.0l
(ie. Imm % Imm x lcm)

p’/a=0l

0.00iI



| %o

0.0l

0.00lI

Illll'll

Hcinsc\ ‘ z=2=0
chpl'\ a=0°

#=0°

/ -
P /0 - 09 Fig. 15. The normalized magnitude
of the scattered azimuthal mag-

netic field for various void
locaticns p'.

d

30° 60° °0° [20° 1I50° 180°




LA

| %

0.01}—

radial mapgnetic {ield for various void
orientations o.

SC Fig. i6. ‘ihe normalized magnitude of the scattered

a =30°

5°
O

z2=2'=0
p7a=05

| RN SRR SN RN T N S R

000l
OO

30° 60° 90° 120° 150° 180°

¢



55

ADDITTONAL BTIBLITOGRAPHY
FOR SECTION 2

Richard Hochschild, Applications of Microwaves in Nondestructive Tecting,
Non-Destructive Testing, Vol. 21, pp. 115-120, March/April, 1963.

C.T. Tai, A Study of Flectrodynamics of Moving Media, Proceedings of the
TEEE, Vol. 52, No. 6, pp. 685-691, June, 1964.

(This study contains a digest of Minkowski's theory of electro-
dynamics of moving media in the three-dimensional form and a
critical review of some current writings on this subject from
the point of view of Minkowski's theory. The invariant nature
of the Maxwell-Minkowski equations is explained in terms of a
conventional language. The important role played by the consti-
tutive relations in formulating a complete theory of electrody-
namics of moving media is pointed out.)

C.T. Tai, Flectrodynamics of Moving Arnisotroric Media: The First-Order
Theory, Radio Science Journal of Research NBS/USNC-URSI, Vol. 69D, No.3,
pp. 401-405, March 1965.

(Minkowski's theory of moving media is extended hereby to the an-
istropic case. The corresponding Maxwell-Minkowski equations
have been derived under the condition that the velocity of the
moving medium is small compared to the velocity of light. As

an application of that theory, it is shown that the character-
istics of a plane wave propagating in a drifting magneto-ionic
plasma can conveniently be determined from the constitutive para-
meters of the plasma without drifting. The equivalence between
the convection current model adopted by Bell and Helliwell and
the polarization current model suggested by Unz and correctly
interpreted by Epstein, Bell, Smith, and Brice is also pointed
out.)

Theresa M. Lavelle, Microwavcs in Dordesliructive Testing, Materials Eval-
uation, Vol. 25, No. 11, pp. 254-258, Nov., 1967.

(The use of microwave radiation in nondestructive testing of non-
metals is investigated. Techniques involving reflection, trans-
mission and scattering are discussed and applied to general
nondestructive tests. The paper also discusses the results of

a laboratory test program in which the following measurements
are considered:

1. Dimensional Measurements - Determination of range and ac-
curacy for thickness variations.

2. TFlaw Detection - Determination of types of flaws and speci-
men configuration.

3. Material Property - Determination of types of physical and
chemical properties that can be detected and possible de-
gree of resolution.

The general test procedure is to irradiate the sample with micro-
wave energy and to monitor the transmitted or reflected energy
for phase or amplitude change. The tests are conducted at X-band
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(9.6 gigahertz) or Ka band (35 gigahertz). Reflection tests
can detect thickness of nonmetals to a resolution of 0.1 mm.
Lack of bond can be detected using a "magic tee" reflection ar-
rangement. Degree of cure can be monitored using a microwave
transmission technique. Scattering is useful in detecting the
presence of a flaw within epoxy samples.)

V.V. Klyuev, A Problem in the Avilysic of the Chara~tevictics of Super-
posed Eddy-Curvent Dicplacement Converiers, Defektoskopiya, Vol. 4, pp.
42-49, January/February 1968.

(Expressions are derived for the components of the electromag-
netic field of a turn during motion of a current conducting
plate in the direction of the axis of the turn, and certain
problems in the determination of the inertia of converters are
analyzed.)

G.A. Barill and V.S. Sobolev, Analysis of the Ncaction of a Conducting
FPerromagnetic Polarizinag Sphere Placed in the Field of an Insertion-
Type Induction Transducer, Defektoskopiya, Vol. 5, pp. 417-422, July/

August 1969.

(This article analyzes the solution of the problem of a sphere
placed in a uniform magnetic field of an insertion-type induc-
tion transformer transducer, and it determines the value of the
signal obtained as a function of the parameters of the sphere
material, i.e., the dielectric constant, the permeability, the
conductivity, and the loss angle. Special attention is devoted
to an evaluation of the effect of the sphere's dielectric con-
stant on signal magnitude.)

V.V. Klyuev, G.G. Kapelin, Zrpcrivicrta? and Theorelicol Research in Feod-
Threough Transduccrs for Monilowirg Movoing Objects, Defektoskopiya, Vol.
6, pp. 701-, 1969,

V.V. Klyuev, M.L. Faingoiz, and G.G. Kapelin, Movement of a Current-
Conducting Plate Pavallel to the Plane of a Stridinc-Typs Transducer,
Defektoskopiya, Vol. 6, pp. 425-432, July/August 1970.

(The emf of a square striding-type transducer located over a par-—
allel moving plate is determined. The voltage hodographs ob-
tained analytically are confirmed experimentally. Recommenda-
tions are given for tuning out the effect of the travel speed of
the object being inspected.)

Yu. K. Fedosenko, Calculaflon of Imsertion FMF During Testing of Rimetal-
lie Cyldndera with a Tkiv Surfuec levjer, Defektoskopiya, Vol. 6, pp. 433-

437, July/August 1970.

(A general expression 1s analyzed for the insertion emf of a pene-
trating pickup with a bimetallic ferromagnetic cylinder whose
surface layer has a thickness equal to 0.01-0.06 of the outer
radius. Simplified equations are found for designing pickups.
Cases are considered in which there are various relations



57

V.V. Vlasov and V.A. Komarov, Electromagnetic Phenomena Which Occur When
a Transverase Uniform Alternating Magnetic Field Acts on a Conducting
Cylinder, Defektoskopiya, Vol. 7, No. 2, pp. 128-133, 1971.

(The results of analytical and experimental investigations of

the electromagnetic phenomena which arise when an external trans-
verse uniform alternating magnetic field acts on an electrically
conducting (magnetic and nonmagnetic) cylinder are presented.

The results of these investigations as they apply to the non-
destructive monitoring of cylindrical steel articles using eddy
currents are analyzed.)

Yu. N. Russkevich, Fstablishment of the Electromagnetic Ficld of a Turn
Over a Conducting Nonferromagrnctic Laycer, Defektoskopiya, Vol. 7, No. 3,
PP. 264-269, 1971.

(The solution to the problem of determining the vector potential
of the nonstationary field of eddy currents induced in a conduct-
ing layer of arbitrary thickness by a jump in the external annu-
lar current is presented. The solution is obtained for the zone
situated over the surface of separation of the media; it consti-
tutes the basis of a model for the attenuation of a field of

eddy currents, giving a clear representation of the character of
this process.)

Yu. M. Shkarlet and N.N. Lokshina, Eddy Current Density During Pulse Ex-

citation of an Applied Transducer, Defektoskopiya, Vol 7, No. 3, pp. 281-
285, 1971.

(This article considers the problem of determining the nonstation-
ary density of eddy currents in a conductive magnetic half-space
exciting an applied transducer powered by current in the form

of a single step. The resultant formula is used to compute the
relative density of eddy currents during a continuous change of
the time of the transient process for certain fixed distances
from the surface into the depth of a metallic medium. The dis-
tribution of current density is computed with respect to the
depth of a metallic half-space for various instants of time.)

M.M. Shel, Harmonic Structure of the Secondary EMF of a Deposited Sensor,
Defektoskopiya, Vol. 7, No. 4, pp. 378-382, 1971.

(An approximate expression is obtained which can be used to cal-
culate the higher harmonics of the secondary emf of a deposited
sensor in checking ferromagnetic parts. The relationship between
the harmonic structure and the shape of the hysteresis loop of
the specimen being investigated is determined. Experimental re-

sults are cited which confirm the correctness of the basic theo-
retical premises.)

V.V. Vlasov and V.A. Komarov, The Magnetic Field of Eddy Currents Above
A Surface Crack in Metal With Excitation of Them by an Applicd Inductor,
Defektoskopiya, Vol 7, No. 6, pp. 665-675, 1971.
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(A method is proposed for a qualitative estimate of the magnetic
field of eddy currents occurring along the walls of cracks spread
on the surface in metal with a comparatively highly developed
skin effect.)

A.L. Zelenkov and V.N. Rudakov, Drtection of Local Defects in Diclectriecs
With a Radiodefectoscope Working in the "Reflection™ Mode, Defektoskopiya,
No. 5, pp. 5-10, September/October, 1971.

(A calculation of the diffraction fields formed in the scattering
of electromagnetic waves by a local defect in a dielectric sheet
when the radiodefectoscope with mechanical scanning employed for
detecting the defect is operating in the "reflection" mode is
presented. The calculation allows for the directional charac-
teristics of the probes. The experimental data obtained agree
closely with calculations.)

D.L. Waidelich, Fesponac of Pulsed Dipoles in Conductors, International
Symposium on Antennas & Propagation, pp. 5-6, Sept. 1971.

m

V.V. Klyuev and M.L. Faingoiz, Nondestructive Tesctiing of Moving Articles
by Means of Superimposed and Supevimposed Sereen Converters Using the
Constant Magnetic Ficld Methocd, Defektoskopiya, Vol 8, No. 1, pp. 100-
106, 1972.

(The distortion of the field H, is determined for superimposed

and superimposed screen convefters of rectangular form and ex-
cited with a direct current during the motion of the test object.
Analysis is carried out on the basis of accurate computations of
imporper integrals defining the cases considered.)

V.A. Sandovskii, Field of the Vector-Potential in a Conductive Semispace
During 1ts Movement Relative to a Wall Having a Current, Defektoskopiya,
Vol. 8, No. 1, pp. 75-80, January/February 1972.

(The problem of the steady-state field of the vector-potential

in a conductive semispace is solved for its movement relative

to a wall having a current. The rigorous solution with general-
1y accepted assumptions for problems of such a class is presented
in quadratures. This solution is analyzed for the case of a
moving semispace of magnetic and nonmagnetic materials and is ex-
tended to any source of a constant magnetic field.)

V.V. Vlasov and B.I. Volkov, Applied Eddy-Current System Having a Hall
Flement as the Searcher and Neacting to the Tangential Component of the
Defect I'iold, Defektoskopiya, Vol. 8, No. 1, pp. 84-89, January/February,
1972.

V.V. Klyuev and M.L. Faingoiz, Nondestructive Testing of Moving Currcni-
mi

Conducting Articles by Means of Pass-Through Converters Using the Constant-

o/

#Field Method, Defektoskopiva, Vol. 8, No. 2, pp. 27-31, March/April, 1972.

(A determination is made of the induced vector potential of outer
and inner cylindrical pass-through converters excited by a con-
stant current in the monitoring of moving current-conducting
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articles. An analysis is made on the basis of accurate computa-
tions of improper integrals.)

V.A. Sandovskii, Caleulating the Tangential Component of the Magnetic Ficl!
Intensity Due to Eddy Currents lenerated by an Inductive Transducer,
Defektoskopiya, Vol. 8, No. 3, pp. 90-93, My-June 1972.

V.V. Vlasov and V.A. Komarov, Interaction of the Magnetic Field of a Lown:
Single-Turn Loop with a Conducting Ferromagncotic (ulinder, Defektoskopiya,
Vol. 8, No. 4, pp. 64-73, July/August 1972.

G.A. Burtsev, Straight-Through Eddy-Current Converters for Monitoring
Ferromagnetic Articles of Finite lLength, Defektoskopiya, Vol. 9, No. 4,
pp. 110-117, July/August, 1973.

N.L. Bondarenko, Yu. M. Shkarlet, and A.F. Chub, Reflection and Screening
of the Nonstationary Field of a Turn by a Conductive Medium, Defektoskopiya,
Vol. 9, No. 4, pp. 118-124, July/August, 1975.

A.A. Kabasheva and V.K. Popov, Caleculation of Multilayer Transformcr ddy
Current Sensors, Defektoskopiya, Vol. 9, No. 5, pp. 17-23, September/
October, 1973.

Yu. M. Shkarlet, Theoorelical Principles of Flectromangnctic and Flectro-
acoustic Novwdestrusl fve Yool Meothods, Defektoskopiva, Vol 10, No. 1,
pp. 11-17, January/February, 1974.

V.V. Klyuev and M.L. Faingoiz, Inspccting Moving Parts with Applied and
Applicd-Sereen Eddy-Currvent: Transduccrs, Defektoskopiya, Vol. 10, No. 1,
pp. 18-24, January/February, 1974.

V.V. Klyuev and M.L. Faingoiz, Inspection of Moving, Ferromagnetic Com-
ponents with Through Eddy Current Converters, Defektoskopiya, Vol. 10,
No. 2, pp. 106-110, March/April, 1974.

-~ .

G.A. Burtsev and E.E. Fedorishcheva, Simple Approxzimation for the lManne-
tostatic I'elds cof Surface Defects and Imhomogeneities, Defektoskopiya,
Vol. 10, No. 2, pp. 111-118, March/April, 1974.

~

V.V. Klyuev and M.L. Vaingoiz, Inspection of a Moving Metal Strip with an
Of f-Acial Shiclded Contact Transducer, Defektoskopiya, Vol. 10, No. 3,
pp. 24-29, May/June, 1974.

V.F. Avduevskii, Calculating the Response of Eddy-Current Transducers,
Defektoskopiya, Vol. 11, No. 5, pp. 27-30, September/October, 1975.

V.P. Zuev and V.N. Novikov, Elcctrostatic Defectoscopy of (ylindrical
Specimens with Axial Ducts, Defektoskopiva, Vol. 11, No. 5, pp. 31-36,
September/October, 1975.

V.P. Kurozaev, Yu. I. Steblev, and V.E. Shaternikov, Influencs of Part
Geometry on the Results of Their Inspection by Eddy-Current Transducers,
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Defektoskopiya, Vol. 12, No. 1, pp. 115-123, January/February, 1976.

(Consideration is given to the effect of part geometry
["boundary effect'"] on the effectiveness of electromagnetic
inspection of thickness, specific electrical conductivity,
and gaps. Recommendations are glveu for suppressing the boun-
dary effect in measuring these values. An analysis is made
on the basis of a solution of the electrodynamic boundary
problem for an applied eddy-current transducer located above
an electrically conducting ellipse of rotation.)

N.P. Rtishcheva and V.V. Sukhorukov, Simulaling the Operating Conditions
of a Through-Type Eddy-Current Transducer When Inspecting Ferromagnetic
#ods, Defektoskopiya, Vol. 12, No. 1, pp. 109-114, January/February,
1976.

(By means of a nonlinear network model of the RC-type voltage-
variable capacitors (varicaps) together with experiments a
study was made of the conditions during eddy-current flaw
detection in ferromagnetic rods which are subjected simultan-
eously to alternating and constant magnetic fields from a
through-type transducer. The effect on the signal-to-noise
ratio of a constant magnetic biasing field is shown and re-
commendations are made for choosing the optimal conditions
when inspecting structural steels.)

B.N. Domashevskii and A.1. Geiser, Polarination of Cracks When Magnetised
in a Longitudinal Alternating IField, Defektoskopiya, Vol. 12, No. 2, pp.
89-94, March/April, 1976.

(The field due to a crack in metal can be likened to a ribbon
dipole with a density of surface magnetic charges which falls
off exponentially with depth into the sample. The theoreti-
cal calculations are compared with experimental data.)

V.A. Sandovskii, Caleulating the Resistance Introduced by Cracks in an
Applied Transducer, Defektoskopiya, Vol 12, No. 2, pp. 95-101, March/April
1976.

(The impedance injected into an applied transducer by a crack
is found by approximation in the form of the product of

three functions depending on a generalized eddy-current para-
meter. A holograph is plotted for small and large openings
of cracks.)

B.I. Kolodii and A. Ya. Teterko, Determination of the Transverse Magne-
tostatic Field of a Cylinder with an Fecentric Cylindrical Inelusion,
Defektoskopiva, Vol. 12, No. 3, pp. 44-50, May/June 1976.

(Using the method of the vector potential in bipolar coordin-
ates, the magnetostatic field of an infinite cylinder with
an eccentric cylindrical inclusion situated in a transverse
field is determined. Special attention is paid to the field
of a semi-infinite solid with a cylindrical inclusion para-
lell to the surface. For the case of an eccentric cavity
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a quantitative analysis is made of the field in relation to
the size and depth of the cavity and the magnetic permeability
of the parent material.)

V.V. Panasyuk, B.I. Kolodii, and A.A. Orlovskii, Flectromagnetic Control
of Electrically Conducting Spherical Specimens, Defektoskopiya, Vol. 12,
No. 5, pp. 129-130, September/October, 1976.

A.S. Popov and L.I. Trakhtenberg, Effect of the Section Shape of a Nown-
magnetic Electrically Conducting Rod on the Parameters of an Eddy-Currer
Transduccr with a Uniform Ficld, Defektoskopiya, Vol. 12, No. 5, pp. 94-
101, September/October 1976.

I.

(Expressions for both the resistive and the reactive voltage
induced in the measuring coil of an eddy-current transducer

by a nonmagnetic conducting long rectangular prismatic rod in

a uniform longitudinal field are derived here from the well-
known solution to the problem concerning the distribution of
the magnetic field intensity over the cross section of such a
rod. The effects which rods in the shapes of a regular tri-
angular prism, a regular hexagonal prism, and a circular cylin-
der cut by two planes parallel to and equidistant from its

axis have on the transducer output signal have been studied ex-
perimentally. It is estimated here, on the basis of the results,
how the parameters of tne transducer output signal are affected
by changes in the shape of the rod cross section.)

Yu. K. Fedosenko, A Metallic Cylinder in the Field of a Noncoaxial Coil,
Defektoskopiya, Vol. 12, No. 6, pp. 43-52, November/December, 1976.

(The problem of calculating the electromagnetic field of a coil,
carrying an alternating current, that encloses a metallic in-
finitely long cylinder arranged noncoaxially with respect to
the coil is considered. The problem is solved by using scalar
functions that enable separation of variables in cylindrical
functions. The problem is reduced to finite expressions de-
fining the induced emf of a feedthrough transducer. The effect
of displacement p_ on the induced emf is analyzed. The author
shows that the amplitude-phase method can be used to compensate
for the influence of Py when monitoring any of the parameters
U, 0, or R. The attenuation of the p_ 1is not measured in the
differential method.) ©

V.E. Shcherbinin and M.L. Shur, Calculating the Effect of the Boundaries
of a Product on the Field of a Cylindrical Defect, Defektoskopiva, Vol.
12, No. 6, pp. 30-35, November/December, 1976.

(Calculations are made of the defect field in the form of an
infinite cylinder, taking magnetic reflections from the spa-
tial boundaries and the boundaries of the defect into consi-
deration. The authors show that taking the last factor into
account leads to a quantitative and qualitative change in the
calculated values of the defect field.)
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V.F. Khrebtishchev and N.S. Savorovskii, #ffeet of Surface Flaws in Thin-
Walled Cylinders, Defektoskopiya, Vol. 13, No. 2, pp. 154-157, March/April, 1977.

V.E. Shaternikov, Interaction of Ficeclromagnetio-Transducer Fields with
Conducting Bodies of Complex Shape, Defcktoskopiya, Vol. 13, No. 2, pp. 162-
167, March/April, 1977.

M.L. Shur and V.E. Shcherbinin, Magnetostatie Field of a Defect Inside a
Plane-Parallel Plate, Defektoskopiya, Vol. 13, No. 3, pp. 92-96, May/June, 1977.

V.A. Sandovskii and M. Ya. Khalikov, Two-Channecl Eddy Current Inspection
Unit for Inspecting Cylindrical Puarts, Defektoskopiya, Vol. 13, No. 4, pp.
94-98, July/August, 1977.

D.0. Thompson, ARPA/AFML  Revicw of Frogress iw Ouantitative VDE, (Rockwell
International) September 1977.

K.¥. Bainton, Characierizing Defects Dy Determining Magnetie Leakage
Fzclds, NDT International, pp. 253-257, October 1977.

(Harwell's computerised ndt literature store was used to iden-
tify papers discussing magnetic flux leakage detection of
defects. The following survey deals with those papers which
deal at least in part with the characterization of defects
rather than purely defect detection. The papers covered used
magnetic particle, magnetographic or magnetometric detection
techniques and various theoretical mcdels were proposed. It
would appear that there is a measure of agreement between
theoretical models and experimental data if one chooses to
work with specific flaw forms and materials, testing of mater-
ial in automatic plant being a practical consequence. It is
important to know the magnetic history of some materials in
order to work at a suitable magnetization level. For the gen-
eral case it has been suggested that one may be able to char-
acterize surface opening cracks, but not sub-surface flaws,

by an equivalent depth width and angle. Experimentally im-
provements in tapes, microprobes, methods of magnetization,
lift off control and use of electronic tailoring have led to
imporved signal-to-noise, sensgitivity and resolution.)

D.A. Hill and J.R. Wait, Arnalyais of Alternating Current Frxceitation of a
Wive Rope by a Toroidal Coil, Journal of Applied Physics, Vol. 48, No. 12,
pp- 4893-4897, December, 1977.

(An idealized magnetic sheet current model for a toroidal coil
which encircles a conducting ferromagnetic rope is analyzed.
This configuration is suitable for the nondestructive testing
of wire ropes and cables. Numerical results for the axial
electric current density induced in thz rope reveal that low
frequencies on the order of 10 Hz are required to produce a
uniform current in a typical rope. For a toroidal coil which
does not completely encircle the rope, the azimuthal symmetry
is lost and harmonics in ¢ are produced. These harmonics are
large but decay rapidly away from the source.)
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James R. Wait, Alectromagnetic Induction in an Anisotropic Cylinder, Pre-
liminary Report to U.S. Bureau of Mines on Contract No. HO0155008, pp. 1-
14, 8 February, 1978.

(The electromagnetic theory of an infinitely long cylinder is
presented for the case when the electrical conductivity and

the magnetic permeability are uni-axial tensors. This is an
idealized yet relevant model for a stranded wire rope or cable
that is to be excited by an external alternating-current source.
The general and special forms of the solution are discussed in
the context of non-destructive testing (NDT) of the rope. The
method of deducing the electromagnetic response for a finite
source is described in the special case where azimuthal symmetry
prevails.)

D.A. Hill and J.R. Wait, Scattering by a Slender Void in a Homogeneous (on-
ducting Wire Rope, Applied Physics, Vol. 16, pp. 391-398, 1978.

(A thin prolate spheroidal void in an infinite conducting circu-
lar cylinder is used to model a broken strand in a wire rope.
The rope is excited by an azimuthal magnetic line current which
is a model for a thin toroidal coil. The anomalous external
fields are computed from the induced electric and magnetic di-
pole moments of the void. The results have applications to
nondestructive testing of wire ropes.)

Jean-Luc Boulnois and Jean-Luc Giovachini, The Fundamental Solution in the
Theory of Eddy Currents and Forces for Conductors in Steady Motion, Journal
of Applied Physics, Vol. 49, No. 4, pp. 2241-2249, April, 1978.

(A closed-form solution to the central problem of the steady lin-
ear motion of an arbitrary current distribution past materials
of constant permeability is presented. The application of the
Green's function technique to the field equations yields inte-
gral representations of the induction, eddy currents, and elec-
tromagnetic forces. Due to interface coupling of the boundary
conditions along the surface of the conductor, Green's functions
are shown to satisfy integral equations. In the case of a con-
ducting slab, explicit solutions for the Green's functions are
derived. Application to magnetic levitation and the calcula-
tions of forces on moving coils are developed. Results are
compared with experimental drag measurements.)

D.A. Hill and J.R. Wait, Electromagnetic Ficld Perturbation by an Internal
Void in a Conducting Cylinder Freited by a Wire Loop, Preliminary Report
to U.S. Bureau of Mines on Contract No. H0155008, pp. 1-55, 14 July, 1978.

(A thin prolate spheroidal void in an infinite conducting cir-
cular cylinder is used to model an internal flaw in a wire rope.
The rope is excited by an electric ring current which is a model
for a thin solenoid or multi-turn wire loop. The anomalous ex-
ternal fields are computed from the induced electric and magne-
tic dipole moments of the void. Computer plots of the scattered
fields are generated to illustrate the effects of various
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parameters. The results have application to nondestructive
testing of wire ropes.)

David A. Hill and James R. Wait, Theory of FElectromagnetic Methods for
Nondestructive Testing of Wire Ropes, Proceedings of the Fourth West
Virginia University Conference on Coal Mine Electrotechnology, pp. 16-1 to
16-13, August 2-4, 1978.

(Past and current techniques for electromagnetic nondestruc-
tive testing of wire ropes are briefly reviewed. Recent
theoretical work is also discussed. 1In particular, we men-
tion prolate spheroidal void model for a broken strand or
individual wire. Here we assume the wire rope is excited by
an electric current loop. This primary field, in turn, in-
duces both electric and magnetic dipole moments in the small
void. The resulting external scattered field is then derived
and numerical results are presented which suggest an effec-
tive configuration of sensing coils. The dual source of a
magnetic current loop which is a model for a toroidal coil
is also considered.)

B.G. Marchent, An Instrument for the Non-Destruciive Testing of Wire
Ropes, Systems Technology, No. 29, pp. 26-32, August, 1978.

(The safety and security of a number of mechanical systems
and equipment depends on the strength of a wire rope. This
article describes an instrument developed by Plessey, under
the terms of a contract placed by the Safety in Mines Re-
search Establishment, to test wire ropes in situ and to pro-
vide an indication of any deterioration in the rope. A mag-
netic method of non-destructive testing (n.d.t.) is used in
which the rope is magnetized by means of either an electro-
magnet or permanent magnet and magnetic sensors are used to
detect anomaious magnetic fields due to wear, corrosion or
broken wires in the rope. A prototype instrument has been
produced for testing stranded haulage ropes used in mines
and the technique can, in principle, be extended to test
other types of wire ropes, for example general stranded ropes
of any diameter, locked coil hoisting ropes, and large moor-
ing cables for offshore structures.)

James R. Wait, The Electromagnetic Basis for Nondestructive Testing of
Cylindrical Conductors, IEEE Transactions on Instrumentation and Measure-
ment, Vol. IM-27, No. 3, pp. 235-238, September 1978.

(Using an idealized model, we deduce the impedance per unit
length of long solenoid of many turns that contains a cylin-
drical sample. The sample with a specified conductivity and
magnetic permeability need not be centrally located within
the solenoid provided all transverse dimensions are small com-
pared with the free-space wavelength. The derivation is rela-
tively straightforward and it provides a justification for
earlier use of the impedance formula. The dual problem, where
the solenoid is replaced by a toroidal coil is also considered.
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It is shown that both excitation methods have merit in non-
destructive testing procedures.)

Robert L. Gardner, Late Time Response of a Cylindrical Wire Fope Model
to a Solenoid, Preliminary Report to U.S. Bureau of Mines on Contract
No. H0155008, pp. 1-12, 19 December 1978.

(Using an idealized model we consider the transient response
when a step function voltage is applied to an infinite sole-
noid encircling a homogeneous cylinder. Previous early time
results are extended to late time. The data showing the sen-
sitivity of the response to changes in conductivity and perm-
eability can be used in non-destructive testing of wire ropes
and other cylindrical structures.)

James R. Wait, Electromagnetic Response of an Anisotropic Conducting Cy-
linder to an External Source, Radio Science, Vol. 13, No. 5, pp. 789-
792, September/October 1978.

(A novel analytical solution is obtained for the boundary value
problem of a circular cylinder of infinite length that is ex-
cited by a prescribed external field. The cylinder is aniso-
tropic in the sense that the complex conductivity and magnetic
permeability are diagonal uniaxial tensors with generally un-
equal elements. The solution involves Bessel functions of non-
integral order. Known special cases are recovered.)

James R. Wait and David A. Hill, Electromagnetic Interaction Petween a
Conducting Cylinder and a Solenoid in Relative Motion, Preliminary Report
to U.S. Bureau of Mines on Contract No. H0155008, pp. 1-17, January 9, 1979.

(An analysis is presented for the mutual impedance between two
solenoids that are coaxial with a conducting cylinder in rela-
tive motion. The formulation is based on the first order Lorentz
transformation and the results obtained are sufficiently gener-

al to encompass any such situation that could arise in nondestruc-
tive testing schemes. A numerical example, relevant to steel wire
ropes of 2 cm radius used in mine hoists indicates that, even with
relative velocities as high as 10 m/s, the mutual impedance at 10
Hz differs little from that calculated for zero velocity. However,
the non-reciprocal effects could be significant for higher velo-
cities and/or for more highly conducting and larger ropes.)
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SECTION 3

ELECTROMAGNETIC INDHUCTION OF AN
An1soTrOPIC CYLINDER

JAMES R. WATT

Abstract-The electromagnetic theory of an infinitely long
cylinder is presented for the case when the electrical conduc-
tivity and the magnetic permeability are uni-axial tensors.
This is an idealized yet relevant model for a stranded wire
rope or cable that is to be excited by an external alternating-
current source. The general and special forms of the solution
are discussed in the context of non-destructive testing (NDT)
of the rope. The method of deducing the electromagnetic re-
sponse for a finite source is described in the special case

where azimuthal symmetry prevails.

INTRODUCTION

There is a rapidly growing interest in the non-destructive testing

of materials using electromagnetic fields [1]. The basic idea is to

induce currents into the target and then observe the secondary response.

The material properties are then deduced from the measured data. At

least this is the objective which is seldom attained.

A particularly important example of non-destructive testing deals

with the examination of metallic cables or stranded wire ropes [2]. Both

the electric and magnetic properties may be an indicator of the mechani-

cal condition of the material. For example, internal breaks in the



67

strands will decrease the longitudinal component of both the effective
conductivity and permeability of the cable. Also, internal corrosion
will tend to inhibit azimuthal and radial current flow so the effective

transverse component of the conductivity would be mainly affected.

STATEMENT OF PROBLEM

Our purpose here is to set forth a general analysis for the electro-
magnetic fields that can be induced in an anisotropic cylindrical struc-
ture of infinite length with a circular cross section. The procedure to
be employed bears some similarity to the analyses of isotropic cylindri-
cal structures [3]. We simplify the problem to some extent by choosing
uni-axial forms for the conductivity and permeability tensors with their
principal axes to be taken parallel to the axis of the cylinder. 1In
spite of the seemingly simplified description, the resulting field solu-

tion does not seem to be available.

FORMULATION

To be specific, we chose a cylindrical coordinate system (p,d,z)
such that the surface of the cylinder is p = a where a is the radius.
The external region p > a will contain the sources but for the time
being we will restrict our attention to the internal region p < a.

Maxwell's equations for the internal region, for a time factor
exp(iwt), are

()E = curl X (1)

> >
-iw(p)H curl E (2)

> >
where E and H are the vector electric and magnetic fields respectively,
and (0) and (n) are the tensor conductivity and permeability, respect-

ively. In view of our stated assumptions, we may write



68

] 0 O
P
(o) = 0 O¢ 0 (3)
0 0 o
A
and
0 O
UD
W)y =10 He 0 (4)
0 Ouz

Here it should be noted that Gp’ o¢ and o, are scalar complex con-

ductivities; thus, for example, Op = gp + iwep where gD and ep are

the real conductivity and the real permittivity, respectively, in the p

!

! " where
UQ

direction. Similarly, we could write Up = “p - iuo

are both positive real. However, for virtually all applications in NDT,

d [A]
an Up

the elements of (0) and (u) can be regarded as real since the imagin-
ary parts are entirely negligible. A more important limitation is that
we restrict attention to time harmonic fields of sufficiently small mag-
nitude that the elements of (o) and (u) do not vary with the field

magnitude (i.e. we are within the linear regime).

Equations (1) and (2), expressed in cylindrical coordinates, are

l,igé - AEEQ = —iou H_ (5); l-EEE,_ EE@- =0 E (8)
p 3 oz 0P ’ p oo oz PP
52 T ap - Ttwnglly (0) 52 "5 %% 9
AE M
T (pE¢) ~ 53¢ —twp H o (73 5 o (DH¢) T ok, (10)

Leading up to later developments, we now assume that the field components
vary according to exp(-imd)exp(-iAz). For single-valuedness, m 1is re~

stricted to positive or negative integers including zero. The parameter



A, as yet, is unrestricted.
im
- ~— E + i)E = —jwy H
n Tz N Ho'o
oE
-i\E - —= = —iwy,H
30 o™
1 93 im
== (pE,) + — E_= -iwp_H
oao(p¢>) pp Hats
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Maxwell's equations are now simplified to

im
. - = i = 1
(11); o H, + 1)\H¢ 0., (14)
5H
(12); -ipr - apz = 048, (15)
(13); %aip (oH,) + %‘“ B, = 0, (16)

To proceed further, we can now decompose or decouple the above set

of equations into two cases.

it is a simple matter to deduce that EZ

|-
|o

)
p ﬁﬁ_E

[o)

0 z

The other case is when we' set

H

13 3
03p P 3p 2

e
Up

In the first case, we set Hz = 0 whence
satisfies
2 .
2 A+ i0 W g
m P ® oy - +iopw) —2E =0 (17)
p2 AN +iopw Z o Op 7
o7 p
E = 0 whence HZ is found to satisfy
2
2 AT+ iouw u
L b o H - (\? + io,u w) —E-HZ =0 (18)
p? A% + icpu¢w My

Now clearly the total field is the superposition of these two cases.

In fact, it is not difficult to show that

H

(19)

(20)

(21)

(22)



70

GENERAL SOLUTION AND ITS PROPERTIES

Solutions of (17) and (18) are modified Bessel functions. 1In fact,

for fields that are finite at p = 0, we can verify that

E = f_ ()1 (upe M7 (23)
i m
H, = fh m()\)IB (vp)e_lm¢e—1AZ (24)
i m
where
2 _ 2 .
ut = (\* + wpu(bw)csz/cp (25)
2 2 .
= (A° + o 2
v ( i (bw)uz/up (26)
o, A 4+ i0 4w
o =m? & — PO 27)
N A2+ 10¢uow
U, A+ dio.u w
B; = m? hﬂl - ¢ p (28)
n A+ io L,w
P oHo
and where fe m(>\) and fh m()x) are unspecified functions of XA and
b ’
m.

Without actually solving anything, we can at this stage draw a num-
ber of important inferences about the eddy current testing of wire ropes
and cables. When we impress an axial electric current, we expect, of
course, that the axial electric field in the cable will be dominant. In
fact, if the axial variation of the field is small (i.e. X is small), the
forms of the solutions simplify. Then
imd

(29)

EZ = fe,m(A)Iﬁ(up)e

L 1
where @ :(iozu w) “and fi = m(u¢/up)2. Furthermore, since H, is negli-

¢
gible in such cases, Ep and E¢ are also small. The induced currents

and the secondary external fields are thus predominantly a function of the

axial electrical conductivity g, and the azimuthal magnetic permeability
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U¢. However, the higher-order harmonics (i.e. m > 0) are influenced to
some extent by the radial magnetic permeability up.

Another comparable situation is when the impressed magnetic field is

axial and uniform. Then

- =y imd
HZ = fh’m(k)lﬁ(vp)e (30)
- L L
where v Z(iu20¢w)2 and @ = m(0¢/op)“. Now the significant induced cur-
rents are azimuthal and driven by the azimuthal electric field

oH

o1l _z
By~ - o 5o (31)

Clearly, in this case, the secondary fields are mainly a function of the
axial magnetic permeability uz and the azimuthal electric conductivity

o] Analogously, the highér order harmonics are influenced by the radial

o
electric conductivity Oa

The two cases considered above can be described as the E—field or
the H-field method of excitation. Actually, it is the latter H-field
configuration that is the basis for nearly all existing methods of eddy
current testing of cables and wire ropes. In the case of the so-called
DC technique, the external excitation is a solenoid that carries a large
azimuthal current. The secondary H-field is then heavily influenced by
the axial magnetic permeability. On the other hand, in the so-called AC
method, the secondary field results from the induced eddy currents in the
cable. These are primarily a function of the azimuthal conductivity o¢
in addition to the axial magnetic permeability M-

The E-field configuration would arise if the cable were excited by
a toroidal or doughnut shaped coil [4]. The resulting induced currents

now flow principally in the axial direction. In general, in this case,

the finite value of A needs to be considered. Nevertheless, the
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secondary fields are now mainly a function of the axial conductivity o,
and the azimuthal permeability U¢-

The situation generally becomes quite complicated when the effects
of the non-zero values of A and m are considered. The resulting
fields then become hybrid {3] being neither purely E or H. 1In such cases,
the secondary fields will depend, in general, on all tensor elements of
the conductivity and permeability. Then it appears that quantitative

calculations must be resorted to in order to gather further insight.

CASE OF AXIAL SYMMETRY

In the following discussion we will restrict attention to azimuthally
uniform excitation such that all the harmonics for m # 0 may be dis-
carded. We will consider, however, fields that have a significant varia-
tion in the axial direction. Now the field components are decomposed into

two sets. For the E-field type,

E_ = fe(A)Io(up)e~1Az (32)
o uf (A) .
Hy = b 1 (up)e 1Az (33)
A2 4+ dwo u¢
and P
Ep~= (ik/Op)H¢ (34)
For the H-field type, we would have
H = fh(A)IO(vp)e—iAZ (35)
—iwp vE, (A) >
E¢ = p_h Il(vp)e irz (36)
A%+ iwy O[b
and P
iy = [—A/(upw)]E¢ (37)
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Two important physical parameters are the axial series impedance

ZS(A) and the axial series admittance YS(A) of the cable.

defined and given as follows:

- 2 .
. 0 - Ez _ (A + 1w0pu¢)lo(ua)
s 2Ta o 2mac uIl(ua)
p=a ?
and
2 .
oy - Hz _ \° + 1wupc¢)10(va)
s 2magE 2maiwy vI, (va)
¢ 0=a p1

Two limiting cases follow immediately:

then we obtain the static forms

~ 2
z () = 1/(ma OZ)
and
~ 2
Y () = 1/(ma”iwp, )
(2), J|ual| and |va| >> 1, then we obtain the asymptotic high
forms
Z ()\) o~ <1MU¢> 1
s ] 2Ta
z
and L
g 2
Y (\) = <=,JL_> 2t
s 1wuz 2Ta

These are

(38)

(39)

(1), |ual| and |va] << 1,

(40)

(41)

frequency

(42)

(43)

These limiting cases have the expected dependencies on the electric

properties.
depends only on the axial conductivity.

in the same on the axial permeability.

Not surprisingly, the static impedance (i.e. resistance)

The analogue admittance depends
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THE EXCITATION PROBLEM

We now consider the excitation problem. The external source is
taken to be a solenoid of radius b of finite axial extent that is con-
centric with the cable. The situation is illustrated in Fig. 1. The
surface electric current density in the solenoid, in the present ideali-

zation, has both an axial and an azimuthal current density defined by

3,(2) = j siny (44)

and for -

IR

(z)

j¢ jocosw (45)

where Y 1is a pitch angle of the current flow. Here one should note that
VY = 0 corresponds to purely azimuthal current flow which is the condition
approached in a solenoid of many turns. In general, for a pitched winding,
the axial component of the current flow should also be accounted for. The

corresponding boundary or initial conditions for the tangential magnetic

fields, according to Ampere's law, must be

H (b7,2) - H_(b',2) = 342 (46)
and
H (b7 ,2) - H,(b,2) = -j_(2) (47)
¢ ¢ z
where bi = limit of b *+ A when the positive quantity A tends to zero.

For the same excitation, we also have continuity of the tangential

electric field. Thus

1]
o

E(b7,2) - E_(b',2) (48)

b ,2) =

|
(@]

E (b ,z) - E

5 (49)

¢
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400
iy () = fr(x)e‘“zdx (50)
where it follows that
Fe 2/2
f(\) = -21~_” j(b(z)el)\zd)\ = —21_5 (jocoslb) felAZdA
—00 _1/2 (51)
= (jOCOSW)(ﬂX)_lsin(AK/Z)
The desired representations are thus
40
j cosy ] .
. _ Yo sin(A%/2) —-iAz
J¢(Z) = - ) e dX (52)
and —00
J0
j siny .
i, (2) = —51%-—./r—519%?&131 e P2 (53)

In the free space region p > a, it is convenient to derive the

fields from electric and magnetic Hertz vectors [3] that

have only z

components U and V, respectively. The fields are thus obtained from

_ d% 3%v
B0 = 3pa2 (54) = 352
2 2
E, = (k2 + —9~.> U (56) H = <k2 A
° dz2 z © 5z?
H = -ic w 3y (58) E, = iy w v
¢ 0" 3p o = Ho® 3p

where ké = £ U w?.

(55)

)V (57)

To be compatible with the selected source fields, we assume the

respective forms, for a < p < b,

~0

U dlnAe(A)[Io(Bp) + 5e(K)KO(BD)]e_iAZdA

=00
and

(60)
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-4co

v - fAhm[Io(Bo) + 6, (DK (BT ar (61)

where B2 = )% - kz and A% and Ah are function of A yet to be
determined. Now the functions 6e and 6h can be determined immediately
by imposing the impedance and admittance conditions at p = a that are
specified by (38) and (39). Then, using (56), (57), (58), and (59), it

is easy to show that

ngo(ea) 2nazs(x)1eow11(5a)’

" | PR, () ¥ Zraz, (e K, (Ba) | (62)

§, )

and

'elo(sa) 2naYS(x)iuom11(3a)“

6, () = - _BKO(Ba) F ZTTaYS()\)i]JOU)Kl(Ba)d (63)

i

Now in the outer region p > b the appropriate forms for the Hertz

potentials are
-0

U = ~l.Ce(A)K0(Bp)e_iAde (64)
and - 4
v = Ch(A)KO(Bp)e-iAZdA (65)

because the fields must be non-infinite as p = o,

The source conditions specified by (46) and (47) can now be applied

to yield
e +(j0/ﬂk)sinw sin(A/2)
AT(D) = igomB[Il _(6e+Re)K1] (66)
and
h —(jO/TrA)c:oslp sin(A2/2)
A = — (67)
B‘"[Io -'_((Sh—Rh)Ko:l
where
e e, e _
RO =C/A = (I +3¢ Ko)/KO (68)

and
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h h,,h _
R =C /A = T(Il - GhKl)/Kl (69)

In the above four equations, the indicated modified Bessel functions are

all functions of fb.

CONCLUDING REMARKS

In principle, we have now solved the problem since the resultant
fields are now given in terms of the source current. The next step would
be to deduce the pick up voltage in a sensor such as a small loop or elec-
tric probe. This is a straight forward process once we have specified
the source and sensor configuration.

The method of obtaining the field expressions for the concentric
current sheet is illustrative of the procedure to use in more general
situations. For example, if the exciting current distribution is no
longer azimuthally symmetric, we would require that higher harmonics
of order m be included. This would tend to complicate the calculation
for anisotropic cylinders because the modified Bessel functions are not
of integer order. Nevertheless, this would be worthwhile.

A particularly important extension would be to consider the uni-
axial tensors (3) and (4) to be directed along equi-angular spirals.
This would correspond to the basic structure of stranded wire ropes.
Analytically, this does not seem to be a trivial extension, since the
axial E and H fields would then be solutions of coupled second order
equations.

Further work on this subject is underway. The present preliminary
report is intended as a guide to the analytical procedure that will be

needed.
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Section 4

FLECTROMAGNETIC RESPONSE
OF AN ANIsoTrOPIC SHELL

JAMES R. WAIT

A remarkably simple and novel solution is obtained for the
fields induced in an anisotropic cylindrical shell that is
located coaxially within a long solenoid. This could be

the basis of a non-destructive measuring scheme for stranded

wire rope.

The non-destructive testing of wire ropes and cables exploits the elec-
tromagnetic response characteristics of cylindrical conductors. If the
operating frequency is sufficiently low, the primary field can penetrate
effectively to the interior of the sample and respond to internal imper-
fections such as fissures and voids. A straight-forward scheme to achieve
this objective is to insert the sample into a long solenoid and measure
the series impedance of the latter at a number of frequenciesl’z. The
electromagnetic basis of this method was discussed in an earlier paper”’
where the sample was idealized as a homogeneous cylinder with a specified
conductivity and permeability.

It could be argued that a stranded wire rope is a cylindrical con-
ductor but, because of the complicated spiral structure, it would not be
isotropic. To shed some light on this problem, we examined the response
of cylindrical conductors that were characterized by uni-axial conducti-
vity and permeability tensors®. To facilitate the boundary value solution,

the axes of these tensors were taken to be coaxial with the cylinder. A
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rigorous solution for general anisotropy would be worthwhile but it
appears this leads to coupled second order equations for the wave func-
tions that are not immediately solvable by analytical methods®. As an
interim approach, we adopt here a very simple model that consists of a
thin shell whose conductivity along orthogonal spirals is different.
The remarkable simplicity of the quasi-~static form of the solution is
justification for studying this problem in its own right.

We consider a thin cylindrical shell of thickness d and radius a
that is encircled by a solenoid of radius b. The shell is characterized
by a conductivity O along spirals with a pitch angle of {; the conducti-
vity in the transverse direction is O~ The nature of the idealizations
will be evident in the formulation of the problem. The objective is to
obtain an expression for the series impedance of the solenoid.

To be more specific, a cylindrical coordinate system (p,¢,z) is
chosen and the shell of assumed infinite length is defined by p = a.

The encircling solenoid of negligible thickness is at p = b. The im-
pressed azimuthal current density in the solenoid is j amps./m. The
region inside and outside the cylindrical shell is homogeneous with
intrinsic propagation constant Y and intrinsic characteristic impedance

/2

2
n. For free space conditions, of course, Yy = i(eouo)l wand n = (uoleo)l/h
for a harmonic time factor exp(iwt).
Leaving aside many elementary details, we can now write down appro-

priate expressions for the axial fields and circumferential fields in

the various regions:
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a4 o Amp<h

e
B = AL (v0) B, = BK_(yn) E_ = DK_(¥p)
W= A*lo(vp) o H = B*Ko(yp) + c*iO(yp) ( H = D*KO(YP) )
H¢ = An”lll(vﬁ) H, = —Bn']K1(y(ﬂ ) i, = m“m-lK](yo> P
P' = ~~A*nl‘i(‘w:) £y = B*:,K](Yp)-(,‘*r;[i('y1,) k;‘;) - D*”“i (i)
Here 10, 11, KO, and Kl are modified Bessel functions in conventional

. . * * I * P
notation while A, A", B, B , C*, D, and D" are unknown coefficients,

By Ampere's law we can write Hz(b+0) - Hy(b—O) = —j which is merely
a statement that the tangential magnetic field is discontinuous at the
solenoid by the amount of current it carries. Also, with the same ideal

zation, E E and i are continuous at p = b. This tells us that ¥ =
z (0 (9
T +

and ¢* = YbKl(Yb)~j where we have made use of the Wronskian [O(X)Kl(x)
+ 1l(x)Ko(x) = 1/x. Thus we think of C* as the dtiving term.

Now we must deal with boundary conditions at the surface of the
anisotropic shell. A direct application of Ampere's law requires

that

0' - r'_ -0 Z 4
HS(a+ j HS\a 0) Otd{t(a) {4)

and

il

Ht(a+0) - Ht(a—O) quE_(a) (5)

where the subscript s or t designates that field component is in the
direction of the spiral or transverse to it. Also, for this model, [

and Et are continuous through the shell so we do not need to distinguish

between the two values on each side. Now we note that

4 +0Y o — o4 .S )
H (at0) = H_(a*0)-C_ - H_(a20)*S_ (6

and

a+0) +0)+§ +(0)) 7
“¢(d 0) = H_(a*0)+s_+ H (at0)C_ (7)

3

i-—-

B
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where CO = cosy and So = siny in terms of the pitch angle Y. It is now

a simple matter to rewrite (4) and (5) in the form

Hz(a+0) - Hz(a—O) = Otd(EzSo_E¢Co)CO - Osd(EzCo+E¢So)so (8)

and

H,(at0) - H

s (a-0)

o Otd(EZSO—E¢CO)SO + Osd(EzCo+E¢So)Co 9)

where it is understood that the E, and the Ez components are evaluated

¢

at p = a.
We can apply (8) and (9) to general forms given by (1), (2), and

(3). Then, bearing in mind that E,(a+0) = E,(a-0) and Ez(a+0) = Ez(a-O),

¢ ¢

we can deduce that

(otc§+ossé)dn11 , ~(0,~0_)dC_S K_
o (o,-0.)dC_S_nI, , n;;io + (ots§+osc2)d1<0
c* ) Y;il + (otc2+oss?-)dn1<l , -(0,-0)dC S K_
(0,-0,)dC_S 1K, , n%glo + (otsz+oscz)d1<O

where all the Bessel functions in the elements of the determinants have
common argument <ya.

The series impedance Z per unit length of the solenoid can be ob-
tained from its basic definition Z = E¢(p=b)/j. But what is most mean-
ingful is the ratio Z/ZO where Zo is the corresponding series impedance
of the solenoid in the absence of the core sample. It easily follows
that

z/z, = 1 = (B"/C*)K  (Yb) /T, (¥b)
Algebraically, this seems rather complicated but a great simplification

ensues if we invoke the quasi-static approximation where ]Yb| << 1. Then,

using the small argument approximation for all the modified Bessel



functions, it follows that

217 =1 - (a/b)Piq(1+iq) "H

0
where
iq = (ya/2) (o _C’+5 $%)nd
’ t o s o0
When the ambient medium is free space, then vy = 12n/) where A is the
(8] O
- , 3 - : 2.
free space wavelength and n = 120w, Then we tind that q = 2400 (a/A ) X
o

(OEC;+USS;)d. This shows that the effective conductance of the shell is
(OLC2+OSSi)d which is a remarkably simpie result. Also, at sufficiently
low frequencies (i.e. g << 1), ZfZO =1 - jq(a/b)z which indicates that
the inductance of the solenoid is not modified by the presence of the
sample. However, at relatively high frequencies (i.e. q >> 1), we see
that Z/ZO ~ 1 - (a/'b)2 which shows that the solencid inductance is re-
duced.

The pitch angle U enters into the general expressions via So and
CO. If the spiral is wound so that the wires are nearly axial (i.e.

SO = siny << 1), we see that the effective conductance of the shell is
Otd' Conversely, if the pitch angle ) is near 90° (i.e. wires almost
circumferential so that Co = cosy << 1), the effective conductance is
od.
s

tlore complicated models could be constructed by employing several
concentric shetls possibly in combination with intermediate regions of
finite isotropic properties. This could lead to a more flexible yet
still tractable model to describe the salient current flow pattern in

a stranded wire rope. Work on the subject continues.
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Section 5

FLECTROMAGNETIC NON-DESTRUCTIVE TESTING OF
CYLINDRICALLY LAYERED CONDUCTORS

James R. Walt
and

Robert L. Cardner

Absiract-We extend a previous analysis for the series
impedance of a long solenoid to allow for the cylindrical
layering of the encircled conductor. The results are dis-
cussed in the context of non-destructive testing of steel
ropes that may have external or internal corrosion. It is
shown that even an internal layer of reduced conductivity
and permeability will be detectable if the frequency is

sufficiently low to permit penetration of the primary field.

INTRODUCTION AND FORMULATION

In an earlier paper [1], we had described the electromagnetic basis
for the non-destructive testing of cylindrical conductors. The model was
highly idealized; it consisted of a long solenoid that encircled the homo-

geneous cylindrical! sample. Here we wish to generalize the theory to account

for concentric layering within the sample. This is a possibie model to account

for the effect of internal and external corrosion that can occur in cables
or wire ropes.

The derivation is given in outline only since the method is well docu-
mented elsewhere [2,3]. We deal specifically with a cylindrical sample that
has an outer radius al and a core of radius ag- There is an intermedidate

annular region bounded by cylindrical surfaces of radii a, and aq- The three
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regions have electrical properties Oj, ej’ and Uj where j = 1,2,3. For

example, the outer layer has conductivity © permittivity €, and permeabil-

1’ 1

ity Ul’ the intermediate layer has properties O €, and H, and the core has

22 72

properties 03, 82 and u3.

The sample is located within a solenoid of radius b but it need not be
centrally located provided the free-space wavelength is much greater than b.
Then, proceeding in the same manner as in the previous paper [l1], we can
derive an expression for the series impedance Z of the solenoid per unit

length in the form

2a
-1- 2+ 47 —L (1)

b? ¢ ip wb?

o
where ZO is the series impedance when the solenoid is free of the sample.
Here ZC is the inwards looking wave impedance at the sample. For example,

if the latter were homogeneous with electrical properties o €

19 l’ and Ul’

we would have
fyw T (gay

zZ = (2)
c v 1,03y

where Y, = [iulm(01+i€lw)]l/2 is the intrinsic propagation constant of the

sample. Here Io and I, are modified Bessel functions of the first kind.

1

This special case was derived in detail in the earlier paper [1].

THE GENERAL WAVE IMPEDANCE

To account for the concentric layering of the sample, we need to employ
the appropriate expression for the radial wave impedance Zc' This can be
obtained in a rather prosaic manner by setting up wave function in each of the
homogeneous regions and determining the unknown coefficients by matching
tangential fields at the concentric interfaces. A more physically meaning-

ful approach is to employ non-uniform transmission line theory as so elegantly
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promulated by Sergei Schellkunoff [2]. The method has been applied to
cylindrically layered plasma regions [3] so we can, in effect, write down
the answer here in terms of wave impedances, transmission factors, and re-

flection coefficients. Thus, we find that

I (V a, )K l’\/_a“)w
- 1 +r
il (y a { 1 (y a )K (y a )

- 1 ] - “},1 2y (7

|
|1 + R |
where -1
7 ‘nll](‘flaz) . H 1 Ky Cryay) -
R o e __:_ ------ — Z e E—— -~ /-“ H (“)
i I (Yldz) cJi K (erlz) ¢ |
and
C 1 (van) K (y.a,) -1
. ! A _1} o it 1 (5)
LNyt (vgay) %L "1 (Y12p) ic ]

Here Ko and Kl are modified Bessel functions of the second type and n, =

iulm/yj. The inward looking wave impedance ZC at the cylindrical interface

of radius Ay is given by an analogous form:

[ L T Oagk (vpa,)
,

I (y i 1 (V2 a,)K, (v,2, ) |
b 1120 2% )
S )u) "~ . T TN Y N N
C -~ ‘[0(7232 ’r.l ﬁ ({23,3)1’\ (Yz“l ) i
\Yzaq)K (Y2a3
where
o o -1
C irr‘zT"L“’zd:z) 3ty (Y5a4) J MoKy (V) L 1(Y333) -
1 . e, TN b “ - — \
L L (pay) T,(v524) Ko (Y924 L, (rqaq)
and 1
CC LAY Lo KOy LT
Loty (pay) Nty (vgag) J L nyK) (vyaq) nyTy (rgas) |
v - L L1/2 . . L
where \(,i = lLin(Oj+1tiw)] and nj = 1uiw/yi for j = 1,2,3.

Actually, subject to such assumptions as axial and azimuthal uniformity,

the expressions for ZC and ZC are exact. TFor computation, however, we can
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neglect displacement currents in the various layers. Thus, if ij << Oj’

we see that Yj = (io].ujou)l/2 = |

Yi’ exp(in/4) whence all the modified Bessel
functions have arguments with phase angles of 45°. The final results can

then be written in terms of the tabulated Kelvin functions [4] via

Io(ail/z) = per(a) + ibei (o)

iIl(ail/z) = bﬂrl(u) + ibeil(u)

Ko(ail/z) = Jer(w) + ikei (o)
—iKl(uil/Z) = kcrl(a) + ikuil(a)

where a is a real parameter.

NUMERICAL EXAMPLES

Computations have been carried out for the complex quantity Z/ZO for
several specific conditions of practical interest. First of all, to pro-

vide a reference case, we let the sample be homogeneous with properties Ol

and My and radius aj- This, of course, corresponds to the general case

under the condition a, = ag = 0. As indicated in the inset in Fig. 1, the

sample is also located centrally within the solenoid of radius b. To be

definite, we also choose the sample radius a, to be 2 cm which is kept fixed

1

in all that follows. Also, the conductivity of the (uncorroded) sample is

taken to be 1.1 x 10° mhos/m and its relative permeability M = ul/uo = 200.

el
These are typical values for steel. The corresponding series impedance
Z = R + iX of the solenoid is shown plotted in Fig. 1 in an Argand diagram.

The abscissa and ordinate are actually R/Xourel and X/XOU respectively,

rel’
where we have assumed that the impedance of the same empty solenoid is

Z = iXO being purely inductive. Various fill factors F = ai/b2 are shown and

the operating frequencies are indicated. As expected, at sufficiently low
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frequencies, R tends to zero and X approaches XO X urel X F. Not surprisingly,
the series impedance of the solenoid is sensitive to the diameter of the
sample.

We now consider an external rust or corrosion layer of thickness £ at

the outside of the sample as indicated in the inset in Fig. 2. This is &

special case of the general analysis when az = 0. The uncorroded region of
radius a, has the same properties as before (i.e. 0, = 1.1 x 10° mhos/m and
Mool = uz/uo = 200) but the external layer now assumes the values 0y = 1

Il

mho/m and ul Uo' The results are, shown in Fig. 2 where we have taken the

fill factor F to be 1 (i.e. a; = b).- Different values of £, the thickness
of the rust layer, are shown. Not surprisingly, the effect of an external
rust layer is to reduce the effective radius of the cylindrical steel sample.
Finally, we consider an internal corrosion layer. As indicated in Fig.
3, this corresponds to the case where the full formula for Zc’ as given by
(3), is needed but we set 0] =04 = 1.1 mhos/m and ul/uo = u3/uo =M o1 =

200 which are the "uncorroded" regions. In the central annular "corroded"

region, we choose uz = Uo and 0, = 1.0 mho/m. For the results shown in Fig.

2

3, we have also chosen the radius a. of the core to be O.3al but the value

3
of £ ranges from being zero (i.e. no rust layer) to a value of O.3a1. As
seen in Fig. 3, the series impedance of the solenoid is still markedly
affected by the presence of the corrosion layer, even though it would not
be visible to an outside observer. Of course, the frequency must be suffi-

ciently low so that the primary fields of the solenoid can penetrate to the

interior of the sample without significant dissipation.
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CONCLUDING REMARKS

The present calculations, while based on a highly idealized model,
indicate the potential of non-destructive schemes using electromagnetic
waves [5]. More sophisticated models based on the layered cylinder formu-
lations can easily be implemented. Actually, three dimensional models that
allow for the finite extent of the primary field and the internal anomaly
have been examined elsewhere [6,7].

Certainly, the sensitivity of such devices to the electrical, magnetic,
and geometrical properties needs further study. Here we have only indicated

a few examples that might promote further developments in this area.



92

REFERENCES

[1] J.R. Wait, "Electromagnetic basis for non-destructive testing of
cylindrical conductors", IFEE Trans. Instrumentation & Measurement,
Vol. IM-27, No. 3, 235-238, September 1978.

[2] S.A. Schelikunoff, Electromagnetic Waves. New York: Van Nostrand Co.
Inc., 1943, p. 205.

[3] J.R. Wait, Electromagnetic Waves in Stratified Media. New York:
Pergamon, 1970, 2nd Ed., p. 534.

[4] N.W. McLachlan, Beesc! Functions Jor knginecra. London: Oxford
University Press, (corrected 2nd Ed.), 1961, p. 211,

[5] H. Hochschild, "Electromagnetic methods of testing metals', Progress
in Nom-Destructive Testing, Vol. I, pp. 58-109, (ed. E.G. Stanford and
J.H. Fearon), New York: The Macmillan Co., 1959.

[6] D.A. Hill and J.R. Wait, "Analysis of alternating current excitation of
a wire rope by a toroidal coil", J. Appl. Phys., Vol. 48, No. 12, pp.
4893-4897, 1977.

{7] D.A. Hill and J.R. Wait, "Scattering by a slender void in a homogeneous
conducting wire rope", Appl. Phys. (Springer-Verlag), Vol. 16, pp. 391-

398, 1978.



Fig. 1.
Fig. 2.
Fig.

3.

93

FIGURE CAPTIONS

Normalized series impedance of solenoid of radius b for a concentric

homogeneous cylindrical sample of radius a, for various fill factors

1
F = ai/bz.
Normalized series impedance of solenoid of radius b = a; for a
sample with an external rust layer of thickness £.
Normalized series impedance of solenoid of radius b = al for a

sample of an interior rust layer of thickness 2.
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Fig. 1. Normalized series impedance of solenoid of radius b
for a concentric homogeneous cylindrical sample of
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Section 6

Non-DESTRUCTIVE TESTING OF A CYLINDRICAL CONDUCTOR WITH AN
INTERNAL ANOMALY - A Two DiMeENsIONAL MoDEL

JAMES R. WAIT
and

Robert I.. Gardner

Abstract-A self contained analysis is presented for the
impedance of a solenoid that encircles a conducting cylinder
that has an internal flaw or anomaly that is also cylindrical
in form. A perturbation method is used to obtain an expression
for the fractional change of the impedance as a function of the

size and location of the anomaly.

INTRODUCTION

There is a need to evaluate the internal structure of wire ropes and
similar cylindrical conductors. This has led to an extensive technology
called non-destructuve testing (NDT). A good survey of the electromagnetic
methods are given by Libby [1l]. One of the basic configurations is a solen-
oidal coil that tightly encircles the wire rope specimen. As indicated in
a two-dimensional analysis [2], the impedance of the solenoid can be related
uniquely to the conductivity and permeability of the wire rope if it can be
assumed homogeneous. It is the purpose of the present analysis to examine
the effect of an internal flaw. While more complicated cases [3] can be
treated, we consider here an idealized two-dimensional anomaly or cylindri-
cal flaw of radius ¢ that is contained within the otherwise homogeneous
cylinder of radius a. The situation is illustrated in Fig. 1 which we will

describe in more detail below.
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Even for the assumed two-dimensionality, a rigorous solution is com-
plicated. However, since we are interested in the threshold of the detect-
ability of an internal anomaly, a perturbation approach is quite permissible.
Here the anomaly is assumed to be "excited" by the field that would exist if
the anomaly or flaw were not present. This primary field actually induces
a monopole, dipole, and higher order multipoles. 1In the case where the wire
rope is encircled by an idealized uniform solenoid [1,2], the primary ma; -
netic field has only an axial component and the primary electric field is
entirely azimuthal. These excite, respectively, a line magnetic monopole
and a line electric dipole within the anomaly. TIf the transverse dimensions
of the cylindrical flaw are small (in terms of skin depth of the wire rope
material), the higher order multipoles are negligible. The secondary fields
of the induced monopole and the dipole are the external observables. In the
simplest case, they manifest themselves ds a modification of the im_.edance
of the encircling solenoid.

A preliminary problem that we need to consider is the excitation of a
cylindrical flaw by a known form of primary field. 1In this manner, the
polarizabilities or strengths of the induced monopole and dipole can be
ascertained. We then use these results in the composite problem where the
exciting field is produced by the encircling solenoid. Finally, some numeri-
cal results are presented to illustrate the fractional change of the solen-

oid impedance as a function of the dimensions and location of the anomaly.

PROTOTYPE PROBLEM

As indicated above, it is useful to consider the following prototype
solution. A circular cylinder of conductivity g, and permeability My with

radius ¢ 1s excited by an electric line source of strength M at a radial
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separation pl. The situation is illustrated in Fig. 2 with respect to
cylindrical coordinates (p,$,z) centered at the external line source and
(pa,¢a,z) centered at the cylinder. The medium external to the cylinder
has conductivity 0 and permeability p. In all cases, displacement currents
are ignored. Their effect can be included by merely replacing ¢ by 0 + icw
where € is the permittivity; the time factor exp(iwt) being understood.

The primary field of the line source can be written as
H = -(oM/2m)K_(vp) (D

1.
where v = (iopw)”® and KO is the modified Bessel function of the second

kind of order zero. This can be checked by noting that

B, = "l _/3p = (yM/2mK, (Yp) (2)

As p + 0 we see that E, -~ M/(2mp) which has the required form.

¢

Using an addition theorem [4], we know that

LG DK (yo)s 0y > 0
€ cos m®a (3)
0 Km(vol)lm(Yoa); P, > Py

I o~1 8

KO(YO) =

m
a

where the modified Bessel functions on the right hand side are of order m.
It is then a simple matter [5] to show that the resultant field external to

the cylinder is

I (yc)

oM m_ R
Km(Yc) m

H = - - {KO(YP) * mZO Eme(Ypl)Km(Ypa> cos¢am} “

Z 2m

where
[nIé(Yc)/Im(yc)] -z,

R = (5)
—[nKé(Yc)/Km(Yc)] o

N
1

= ”aIé(YaC)/Im(YaC) (6)

am

1
_ - _ - (s '
n ipw/y n, 1uaw/ya and Y, (1uacaw) .
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From (4) we see that the first two terms of the secondary field can be

written
S _ app
H = H [Io(yc)/Ko(Yc)]RoKo(Ypa)
(7)
—2(H§PP>'[r1<vc>/K1<vc>JR1K1<ypa)cos¢a
where
app _ , 3
Y = ~(oM/2m)K_(yp,) (8)
and
a2yt = [8/a 0o TP = (om/2mK, (voy) (9)

Here it is useful to observe that the terms proportional to Hzpp and
(ijp)' are the induced monopole and line dipole, respectively. By invok-

ing the small argument approximations, we readily verify that

R = —(iw/Z)(u-ua)OCZQn(O.SQC) (10)
and
R, = (0 -0)/(0_+0) (11)
COMPOSITE PROBLEM
Now in the composite problem indicated in Fig. 1, we have
H AT_(yp) (12)
and
app' _ .
HZ AIl(yp) (13)
or
a _
£,"" = -AnI, (vp) (14)

which would be the fields inside the homogeneous cylinder (i.e. p<a) if there
was no internal anomaly or flaw. These applied fields excite or induce the
monopole, dipole, and multipoles within the cylindrical flaw. These in turn
produce secondary fields that are observable outside the main cylindrical

conductor. In what follows, we actually assume that a - by >> c.
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In order to deal with the interaction of the above secondary fields
with the wall boundary at p = a , we need to translate back to the (p,¢,z)
coordinates. First of all, we may employ the same addition theorem as used

in the prototype problem:

400
K (yp) = im K, (vp)I_(yp ) explin(m-¢)] (15)
where
P, = [p* + pi + 20,p cosh]? (16)

The other addition needed is obtained straight-forwardly by differentiating

both sides of (15) with respect to - Thus

[ee]

= _ » 1 RE -in¢
K, (vp_)coso_ = H=Zm K (yp)I'(yp)(-1) e (17)
where we note that
Bpa N + Qacos¢
~ = ———— = cos¢ (18)
801 P, a

It is now a simple matter to deal with the wall interaction. This

amounts to replacing Kn(Yo) in both (15) and (17) by Zn(Yp) where

K (ya)
Ln(YD) = Kn(YD) +or f;f?gthn(YD) (19)
where
[-nK' (ya) /K _(ya)]- z
ro = hp o ono o an (21)
[HIA(Ya)/In(Ya)]+ z_
and
2, = "N KL (v a) /K (v a) (21)

This solution is entirely analogous to the earlier result but now the equi-

valent line source is inside the cylinder. Here Z.n is the radial wave

impedance looking outwards at o = a 1into the external free space region.
Now we can write down the desired form for the secondary field.

Clearly it is given by
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s 400 I (ye) I (YC)
Bo=a ] {1 (Ypy) R_(ve) RoI (yp) + 21, (vp)) K (o) y R

n=--o

f(Ypl)}
. (22)
x (-1)z_(yp)e

Actually, a quantity of special interest is the fractional change A of the
impedance per unit length of an encircling solenoid at p = a. Under the
usual assumptions [1,2], this can be obtained from

20

A [ f £S (a,¢)do][ f [n“pp<a $rapl™? (23)

¢

where

,b

¢(a,¢) = - nan’® /?(Yo) (24)

The integration over ¢ removes all except the n = 0 term in the express-

ions for the secondary field. Thus we find that

2 (vpy) E9(;~; R+ 213 (vp,) 2! (va)

. I (yc) I (YC)
[ K (YC)
(25)

LE IYa‘ << 1 , this reduces to the very simple result that

~
]
o
~

=~ (pa—u)cz/(uﬁz)

which is compatible with physical intuition. Here the contribution from the

induced electric dipole term is of second order.

NUMERICAL RESULTS AND DISCUSSION

Some numerical results for the fractional impedance change !AI of the
solenoid or sensor were obtained from (25) for the case where the wire rope
conductivity o = 10°mho/m and the relative permeability u/uo = 44. The
wire rope radius a was 2.54cm (i.e. 2 inch diameter rope). The flaw or
anomaly itself was assumed to be an air-filled void with free space proper-

ties (i.ec. M, = 4 % 10"7henries/m, o, = 0 and £, = 8.854 x 10" '%farads/m).
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The magnitude of A 1is shown plotted in Figs. 3, 4, 5, and 6 as a function
of c¢/a where c¢ 1is the radius of the anomaly. 1In each case the operating
frequency is indicated. 1In Fig. 4, the anomaly is at the center of the main
cylinder and, as indicated, the response for frequencies up to 10 Hz is
essentially the same as that of DC or zero frequency. However, the 100 Hz
response is reduced significantly due to the inability of the exciting field
to penetrate to the center of the cylinder or wire rope. The corresponding
response for 1000 Hz is off the scale for this example.

The effect of increasing the offset of the anomaly is illustrated in
Figs. 5 and 6 where Py = 0.5 and 0.8a, respectively. The D.C.
limit and the lower frequency response are not modified by changing the
of fset Ol but for 100 Hz, and particularly for 1000 Hz, there is a marked
change. Physically, this is not surprising since the energy even at 1000
Hz will penetrate to the outer region of the cylinder or wire rope with
negligible attenuation.

Most of the curves shown in Figs. 3, 4, 5, and 6, on a log-log plot,
differ imperceptibly from straight lines with a slope of two. In fact, for
the D.C. limit, (26) tells us that A « (c/a)2. However, for the higher
frequencies, the dipole term has a non-negligible contribution and the re-

sult is that the curves tend to be somewhat steeper.
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Section 7

SCATTERING BY A SLENDER VoID IN A HOMOGENEOUS
ConpucTING WIRE RoPE

DAVID A. HILL
and
JAMES R. WAIT
Abstract. A thin prolate spheroidal void in an infinite con-

ducting circular cylinder is used to model a broken strand in a
wire rope. The rope is excited by an azimuthal magnetic line
current which is a model for a thin toroidal coil. The anomalous
external fields are computed from the induced electric and mag-
netic dipole moments of the void. The results have applications

to nondestructive testing of wire ropes.

Electromagnetic nondestructive testing is widely used in the metals
industry to inspect and evaluate materials [1]. Both dc (direct current) and
ac (alternating current) methods [2,3] are currently used for inspection of
wire ropes [4] which are made of electrically conducting ferromagnetic material.
In both methods, the magnetic field is applied along the axis of the rope, and
rope irregularities produce magnetic field changes which induce voltages in

the sensing coils.

An alternative ac method would excite the rope with an axial electric field
rather than an axial magnetic field. Since axial electric currents would be
induced, this method might be more sensitive to broken strands than the present
ac method which induces only azimuthal currents which tend to flow normally to
the strands. Such a method could also be used on electrical conductors which

are not ferromagnetic.
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An appropriate source for excitation of axial electric currents 1s a toridal
coil which encircles the rope, and a magnetic current model for the toroidal
source coil has been analyzed [5]. Expressions for both the interior and exterior
fields were derived for a homogeneous wire rope.

In this paper we wish to allow for the presence of a small slender void
within the rope. Such a void can be considered a model for a broken strand.

The void is also allowed to be oriented at any arbitrary angle to the rope axis

to account for the winding geometry of the wire rope. The induced electric and
magnetic dipole moments are computed from the primary fields and the electric

and magnetic polarizabilities of the void. We then obtain expressions for the
external fields of electric and magnetic dipoles of arbitrary orientation. It

is these external fields which are the observable quantit{és in any EM nondestruc-
tive testing method. The particular expressions, derived for the external fields
of internal electric and magnetic dipoles, should be useful in future analyses

of other types of small imperfections in wire ropes. Of course, in such cases,

the electrice and maenetic nolarizabilities would be different.

Primary Field Excitation

In a previous analysis [5], we analyzed an azimuthal current sheet source
which encircled the rope. The current sheet was allowed to have arbitrary width
in the z or axial direction and arbitrary azimuthal extent. This source results
in fairly complicated expressions for the electric and magnetic fields. Since,
in this paper, we are primarily concerned with the fields scattered by the void,
we take the simpler special case for the source shown in Fig. 1. Specifically,
a magnetic current ring of strength K is located at a radius b in the plane
z = 0. This is a model for a thin toroidal coil which completely encircles the

rope. The adopted time dependence is exp(iwt) for all source and field quanti-

ties.
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The rope is assumed to be infinitely long and has radius a. It has conduc-
tivity Gw’ permittivity Cw, and permeability uw. The surrounding free space has
permittivity €y and permcability Mo For now, we defer discussion of the void
properties and consider only the homogeneous rope.
Because of the symmetry of the source and the rope, the fields are TM (trans-
verse magnetic) and independent of ¢. The magnetic field has only a nonzero

HP*

azimuthal component ¢ and the electric field has only nonzero axial and

. Pr PT
radial components E? and EP

. The superscript pr denotes the fields in the
absence of the void. These primary fields have been derived previously [5], and
the explicit forms both inside and outside the rope are given here in Appendix
A, We note that Egr and HYY are zero for p = 0. On the other hand, Ezr

¢

is nearly independent of p inside the rope for sufficiently low frequencies.

Induced Dipole Moments

We sclect a thin prolate spheroid of conductivity Ov’ permittivity €, and
permeability b, in order to model a broken strand. The prolate spheroidal shape

is a couvenient one because its electric and magnetic polarizabilities are known.

However, we would not expect a significant difference for a thin circular cylin-
der of the same length and volume. To account for the winding geometry of the
rope, we allow a rotation of the major axis of the spheroid about the p' axis by
an angle a. Thus the major axls is oriented at an angle o to the unit vector 2!
and an angle 7/2 + o to the unit vector $' as indicated in Fig. lc.

Since the void has a contrast in both the electric and magnetic properties,
both electric and magnetic dipole moments will be induced [6]. The electric po-
lardizabilicies for the incident electric field applied along the major axis, ol

maj’

e
or along the minor axis, umin’ are given by
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of = -v(o -0.) (1)
maj w Vv
and
e _ —ZV(GW—GV) 2
min 1+0 /o ?
v w

where V 1is the volume of the thin prolate spheroid. Since we anticipate the
use of very low frequencies, we have neglected displacement currents. To include
them, Ow would be replaced by Ow + iwew and Ov would be replaced by

o, + iwev in (1) and (2). The magnetic polarizabilities for the incident mag-

m

netic field applied along the major axis, azaj’ or along the minor axis, amin’
are similarly given by
at = —Vie@u -u ) (3)
maj w v
and
%in iviw:u7uUV) )
v Tw

In order to compute the induced dipole moments, it is first necessary to
resolve the incident electric and magnetic fields into components along the
major and minor axes. The resultant induced dipole momerits can then be resolved
into the more convenient p, ¢, and z components. When this is done, the

induced electric dipole moments are found to be

Ids = wPT¢.€ 2 € s 2
( ds)Z Ez (amaj cos“o + o s, sin o) , (5)
1ds) = EPT(e€ - of ]
( d'w)(p E, (amin amaj)31nacosa R (6)
1d _ oPr e
( S)p Ep o i (7)

In (5)-(7), the primary electric field components Ezr and Egr are evaluated

at p',¢',z'. Similarly, the induced magnetic dipole moments are found to be

pPr, m m .
H¢ (amin - amaj)31nacosa , (8)

il

(rdf),

= yPr, M
(Kdl)(b = H¢ (G.m

2 m 2
gpcos’ o + amajsin a) , (9)



(Kdl)p = 0. (10)

Note that the units of the induced electric dipole moments in (5)-(7) are ampere
meters, and the units of the induced magnetic dipole moments in (8)-(10) are
o ~mercers.

These induced dipole moments are the sources of the scattered field. In

the following section, the specific expressions for the scattered field are

discussed.

External Scattered Fields

The scattered fieid external to the rope is the observable quantity in any

NDT system. Since we anticipate the use of coils for sensors, we will consider

sC
¢

™ " {y,9,z). Each of these components can be written as a superposition of the
z

. . ; ; . sc
primay ily the scattered magnetic field components H; (p,0,2), H, (p,d,z), and
contributions from each of the six induced dipole sources. (Actually, there are
onfy five nonzero sources since (Kdﬂ,)p is zero for the specific configuration
considered here).

The three scattered field components can be compactly written in the follow-

.'L;.', macriax form

-H‘ZC ) —Ggp G;'(b Gzz- —(Ids)p-1

H;C = Ggp G$¢ ng o | (1ds),

H:“ Gip qu) G‘;Z (1ds)
I Grgp G‘gcb c‘gz ] —(dez)p | (11)

+ G$p G$¢ ng o (xaR),

th G:¢ G:z (kd2)
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In the first 3 by 3 matrix, G:p is the p component of H at (p,$,z) pro-
duced by a unit p-directed electric dipole at (p',¢',z'), GZ¢ is the p com-
ponent of H produced by a unit ¢-directed electric dipole at (p',9$',z'), etc.
The second 3 by 3 matrix is similar except that the ¢" elements correspond to
unit magnetic dipoles. We choose the above matrix notation rather than the ele-
gant dyadic Green's function notation [7] because we are interested in the rela-
tive importance of each source and G term. Also, for the cylindrical geometry
encountered here, all of the matrix elements can be derived in a systematic

manner from z components of electric and magnetic Hertz vectors [8]. The specific

expressions for the matrix elements are derived in Appendix B.

Numerical Results

The quantities of most interest in NDT are the external (p>a) magnetic
field components which are observed with the sensing coils. The primary magnetic
field has only a ¢ component ng which is given by (A-7) for a < p < b or
by (A-11) for p > b. The scattered magnetic field has all three components as

glven by (11). A computer program has been written to compute the external pri-

mary and scattered magnetic field components.

There are too many parameters to present a thorough parametric study here.
For all numerical results shown the following parametric values remain fixed:
a=1lcm, o =1.1x 10°mho/m, W, = 2004, b= 2 cm, frequency = 10 Hz, p = 2
cm, 0 = 0, and H, = M- For this low frequency, the conduction currents
dominate, and the permittivities Ew and €, are unimportant. The above values
of o, and U, are roughly representative of stainless steel [9], but the perme-
ability of steel is quite variable [10]. For the above parameters, the radius

a is approximately one skin depth.
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In Figs. 2-9, we show the magnitude of the scattered magnetic field com-
ponents normalized by Vllgr as a function of ¢ - ¢'. The reason for showing
the ¢ - ¢' dependence is that, although the primary field is independent of
¢, the scattered field varies considerably in ¢. This variation might dictate
the use of multiple sensing coils spaced in azimuth around the rope. Ti:2a curves
are normalized by the primary field because the anomalous scattered field is
measured in the presence of the primary field and their ratio is thus of interest.
We also normalize the results to the volume V of the void in order to make the
curves more general. lowever, a typical value for V might be on the order of

10783 (=1 ¢m X L nm X 1 mm).

In Figs. 2 and 3, we set z = z' = 5a and o = 0°. By symmetry, Hzc = 0
for this case. H;C and H;C are of approximately the same level, but HZC is

odd in ¢ - ¢' while H;C Is even. Note the decrease in scattered field as

the vold is moved from the outer region (p'f/a = 0.9) toward the center
(p'/a = 0.1) of the rope.

In Figs. 4, 5, and 6, we retain 2z = 5a and o = 0° but allow =z' to vary.

: s sc
Also, we set p'f/a = 0.5. Note that the level of HpC and H¢ increases as
z' approaches z. However, H:C is very small for z' = z, and its peak level

is at about z'/a = 3.75. Since o = 0° in Figs. 2-6, only the axial and radial

electric dipole moments, (Ids)z and (Ids)p, and the azimuthal magnetic dipole,

(Kd2)¢, are induced. Also, (Ids)p is very small because its exciting field
Jgr is small. The calculations reveal that (Ids)z and (Kd£)¢ contribute
approximately equally to the scattered field.

In Figs. 7-9, we have z = z' = 5a and p'/a = 0.5, but we allow o to

vary from 0° to 30°. Nonzero values of o allow two addltional dipole moments,

(ids) and (de?,)Z to be induced. The result is a decrease in the level of

¢

5 . sc
n°%¢  and HZC and an increase in the level of Hz .

¢
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The phase of the scattered field was also computed, but was found to be of
less interest. Also, the individual dipole contributions were computed, and
they are of individual interest since they will be excited differently for other

sources on other void configurations.

Concluding Remarks

An idealized model for a wire break in an infinite conducting rope has been
analyzed. The thin prolate spheroidal void has been shown to produce a signifi-
cant anomaly in the exterﬁal magnetic field when the rope is excited by a thin
toroidal coil. 1In general, all three components of the scattered magnetic field
are nonzero, but the azimuthal dependence is fairly complicated and contains
some deep nulls. This suggests that multiple sensing coils of various locations
and orientations might be worthwhile.

Although we have generated numerical results for the specific case of a
thin prolate spheroidal void, the formulation given here actually yields the
external fields for arbitrary induced electric and magnetic dipole moments.

Thus the formulation is useful for any type of rope imperfection that can be
characterized by induced electric and magnetic dipole moments. This requires
only that the rope imperfection be small in terms of the rope radius and the
rope skin depth. Larger imperfections should have a similar qualitative be-
havior, but could probably be rigorously analyzed only by solving an integral

equation for the fields in the imperfection.

Also, it is a simple matter to perform similar calculations for a solenoidal
coil of the type used in present NDT systems [3]. The scattered field calculation
remains unchanged, but the primary field would be TE(Ezr = 0) rather than
TM(HZr = 0). Some calculations for this case have been carried out by Burrows

[11] for the special case where both exciting and sensing coils are coaxlal with

the tubular specimen.
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APPENDIX A - Primary Fields

Phe previous analysis for the homogeneous rope excitation [5] can be reduced
to the present thin current ring source by letting the thickness £ of the mag-
netic current source approach zero and by setting the azimuthal extent of the
source cgual to 2. The vesultant field expressions take different forms in
the three reglons, p < a, a< p <b, and p > b.

inside the rope (p < a), we find

Py e 2. . . R ‘_ i -
hz Jr.w dOlO(wp)pr\ idz)dx , (A-1)
(3]
1~:g’° _— fnwaoxl(wp)exp(-ixz)dx , (A-2)
o
(€8]
pT — s _
M¢ -jﬂlmawwaoll(wp)exp( iAz)dx , (A-3)
”) l’ ~
vhere  w o= (AT 2), Y; = imuw(ow+iw€w), iwew =0, + iwe _, and IO and Il

are zevo and fivst order modified Bessel functions. The factor a, is given

-1
-l ' "
o {OBO . 19595211 - (A=4)
‘o uK (ua) NoYo '

L2 - ,
W dIO(wa)KO(ua)

ViR

KbKé(ub) .
B, = — = , u= *w)*
412y
= jw(jl & )% n o= (u /e )%
YO b 5‘0-‘0 » iO o -0 b

iwe Il(wa)

Y = . : s
o w 1O(wa)

K  is the strength of rlie magnetic current ring, KO is a zero order modified
Bessel Tunciion, aund prime ' denotes differentiation with respect to the argument.

ia the region between the rope and the source (a < < b), we find
8 I
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(o8]

P 2 » -5
B = - [ 0lB,1 o) + ek pTexp (-Dr2)ax (A-5)
Egr = - J(.ilu[BoIl(up) - CoKl(up)]exp(—ikz)dX s (A-6)
HPY = - [ dwe u[B I,(up) - C K, (up)Jexp(~irz)dx (A=7)
o) o o'l ol ’
where -
(v, I.(ua) i
Io(ua) u Io(ua) RS
CO = - :Y K" (ua) = Bo (A-8)
Ko(ua) 75_ Ko(ua) - noyo
B o i
Outside the source (p > b), we find
EPT = - u?A K (up)exp (~irz)dx (A-9)
z 00 i
pr .
E'" = ./F iAuA K, (up)exp(-iiz)dA , (A-10)
p ol
ng = f iweéquKl(up)exp(—ilz)dX , (A-11)

where

A =C_ - Boll(ub)/Kl(ub) . (A-12)
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APPENDIX B - Dipole Fields

The derivation of the fields produced by a dipole source within a circular
wire rope is analogous to that for a dipole source in a circular tunnel [8,9],
and some of the details are excluded here. The fields within the wire rope for

p' < p < a can be obtained from Uw and VW which are the z components of

electric and magnetic Hertz vectors.

u, = TIA QUK (wo) + P (DT (wo)] (8-1)

v, = T[B (DK _(wp) + Q VI _wp)] (8-2)
where

o[ 1= J/' SO0 1m0y (8-3)

Am(A) and Bm(k) are functions of the source dipole and will later be given for
the six dipole types. Pm and Qm are determined from the boundary conditions

at p = a and are given by

2 Y K' Y. 1! Z
po= oA ([ T (R ¢ YR Bk
m m 2 m wK W m wl n m m
w-a m m W
(B-4)
iwp a
+ Bm<—2\——~ am) Y Dml ,
w?a w?a
2 Y I’ YK' Z
Q = - | mA o 4 [ _wom n wm o, Mmooy
m 2, m wIm W m me nw m m
v (B~5)

where¢

._. '
m ' Twm Km(ua)

m 2 m u Km (ua)

>

and
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_ '
iweo Km(ua)

u Km(uai

The argument of the modif ied Bessel functions Im and Km is wa wunless

indicated otherwise.

The external fields (p > a) can be obtained from

where

and

U = T[Um] and V = F[Vm] (B-6)
Um = Sm()\)Km(up)
Vm = Tm()\)l(m(up)

Continuity of EZ and Hz at p = a vyields

w2 'Ame(wa) + PmIm(wa)1
50 =3 K (ua) (B-7)
u® L m .
and
w? ”Bme(wa) + QmIm(wa)~
Tm - K (ua) (3-8)
u? L n .
The external magnetic field components can be written
H = H H, = 1 = -
0 rL pm] , 1¢ r[}¢m] , and H F[Hzm] (B-9)
where
LY we m
Hpm = —i) ‘a~p—‘ + Um
we m
—-i ' — G -
1KuTme(up) + 5 Sme(up) , (B-10)
H, = :EA'V - dwe EHE
¢m P m o 9p
= :Eé‘T K (up) - iwe uS K'(up) B
5 K (up iwe uS K (up) , (B-11)
and

H u Vm u Tme(up) . (B-12)



Similar expressions are avallable for the electric field components.

Equations (B-1)-(B-12) yicld the c¢xternal magnetic field components in
terms of Am and Bm which are functions of the source dipole. We now tabulate
A and Bm for the six dipole types [8].

For a radial electric dipole (Ids)Q , we have

i)

A = (Ids) =+ ———— TI'(wp") (B-13)
m P Griing w O
W
and
B = (Lds) - _Am I (wp') (B-14)
S [”Tzwzp’
For an azimuthal electric dipole (Idé)¢ , we have
, mA ;
A.m = (Ids)¢ . -—\*—-~Im(wp ) (B-15)
4?iwt wip'
W
and
B = (Ids), + ——— T'(wp') . (B-16)
m ¢ 4ty
For an axial electric dipole (1ds)7 , we have
1_(up")
A = (Ids) * ——— (B~17)
m VA 2. A
4m iwk
and
Bm =0 . (B-18)
For a radial magnetic dipole (Kdﬁ)p , we have
A = (KdR)  + —T 1 (up') (B-19)
m P 42wp’ m
and
B = (RAR) + — A 17 (up') (B-20)
m o m

éwzwiwu
W

For an azimuthal magnetic dipole (Kd2), , we have

g > wenmave oo
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-1

A = (Kd®), * - I'(wp') (B-21)
n ¢ 4y ™
and
mA '
Bm = (Kd2)¢ ¢ — Im(wp ) (B-22)
4w iy p'
w
For an axial mangetic dipole (KdSl)Z , we have
A =0 (B-23)
m
and
L (wo')
B = (KdR) +» — . (B-24)
m Z 2.
4 iwyd
w
We are now able to define the matrix elements required in (11) in terms of
Hp s H¢ , and HZ given in (B-9). For each of the six dipole types, we can

define the required three elements in a column matrix as follows.

For a radial electric dipole (Ids)p , we have

c© —1 H
pp p
e 1
G = H B-25
o0 (Tasy, ¢ (5-25)
c° H
zp z

For an azimuthal electric dipole (Ids)¢ , we have

— -—

e
Go¢ Ho
¢S = L H (B-26)
oln) (Ids)¢ 0
e
] G | bHZ ]

For an axial electric dipole (Ids)Z , we have

— - -
. A
pz p
e _ 1 -
G¢Z = ?Eagj; H¢ (B-27)
Ge H
L zz | |z ]
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For a radtal magnetic dipole (Kdl)p ,» we have

- -y - -
Glll ”
pp p
m 1
G -— e H B"'28
o wan, | M (B-28)
c" H
L zp |z
For an azimuthal magnetic dipole (Kdl)¢ , we have
s _ﬁ P ey
m
G H
pd p
m 3 1 -
So0 © (KdR) Ho (B-29)
¢
m
G H
| z¢ N | 2z N
For an axial magnetic dipole (KdQ)? , we have
— —] - ~y
" H
pz p
m _ 1 _
G¢Z M(Kd!&)z ch (B-30)
G H
Z7 z
L o o -

In order to numerically evaluate the G elements, we encounter the infinite

summation and integration of the I operator as indicated by (B-9). However,

all of the G elements are either even or odd in m and A , and the summation

and integration can be taken over positive values of m and XA to reduce the

computation time by a factor of 4. Also, all G elements are calculated in

parallel which means that the required modified Bessel are calculated only once

resulting in a large time savings. In evaluating the A integration, a variable

step size integration is used to deal effectively with the rapid variation for

small X and the slower variation for large A. Thus the subroutine which

computes all 18 elements makes use of all these time saving features and is

quite fast.
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Section 8

FLECTROMAGNETIC FIELD PERTURRATION BY AN INTERNAL VOID
IN A ConpucTING CYLINDER ExcITED BY A WIRE Loopr

DAVID A. HILL
and

JAMES R. WAIT

Abstract. A thin prolate spheroidal void in an infinite
conducting circular cylinder is used to model an internal flaw
in a wire rope. The rope is excited by an electric ring current
which is a model for a thin solenoid or multi-turn wire loop.
The anomalous external fields are computed from the induced
electric and magnetic dipole moments of the void. For this type
of excitation, the induced axial magnetic dipole moment is the
dominant contributor to the scattered field. The results have

application to nondestructive testing of wire ropes.

Introduction

Electromagnetic NDT (Nondestructive Testing) is widely used for inspec-
tion and evaluation of metals [1l], and electromagnetic methods in NDT of
wire ropes [2] have recently been reviewed [3}]. Both DC and AC methods
[4,5] are currently in use. In both methods, the magnetic field is applied
along the axis of the rope, and rope irregularitics produce magnetic field
changes which induce voltages in the sensing coils. A two-dimensional model
of solenoidal (electric current ring) excitation of a homogeneous wire rope

has now been analyzed fully [6]. The toroidal coil (magnetic current ring)
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excitation was also treated by invoking the principle of duality. A further
analysis deals with a two-dimensional model for a wire rope with an internal
anomaly [7], and the resulting change in the input impedance of the surround-

ing solenoid.

Here we consider a three-dimensional model in which an electric cur-
rent ring is used to model a thin solenoid or multi-turn wire loop. The
analogous problem of a magnetic current ring has already been solved [8];
thus the needed primary field expressions can be obtained from the magnetic
ring current solution by duality. We allow for the presence of a small
slender void within the otherwise homogeneous rope. Such a void can be
considered a model for a broken wire within the rope or si-ilar internal
flaw. The void 1is allowed to be oriented at any arbitrary angle to the
rope axis to account for the winding geometry. Following a previous
analysis [9], we compute the induced electric and magnetic dipole moments
from the primary fields aﬁd the electric and magnetic polarizabilities of
the void. The external fields of the induced dipole moments are then cal-
culated using the previous formulation for dipoles of arbitrary orientation
[9]. These external fields are the observable quantities in any non-
destructive testing method..

The most cowmmon methods of wire rope testing detect the average or
integrated value of the circumferential electric field with a receiving
solenoid which completely encircles the rope. Usually this is done by
making and measuring the change in the mutual impedance of two coaxial
loops or similar arrangement. But, in addition, one should be able to
probe the detailed structure of the external magnetic field components
with small sensing coils. Because this possibility has not been well

explored, we present here, in graphical form, the azimuthal dependence
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of the three components of the external magnetic field for a significant
range of the relevant parameters. These plots are intended to be an aid
to the design of an effective configuration of sensing coils. Although
the analysis is carried out for the AC case, DC excitation is included as

a special case.

Primary Field Excitation

The geometry of the rope and the source are shown in Fig. 1. The rope
is infinitely long and has radius a, conductivity Ow’ permittivity €y and
(magnetic) permeability pw. The surrounding free space has permittivity
€, and permeability Mo For now, we defer discussion of the void proper-
ties and consider only the homogeneous rope.

The source 1s an electric current ring of strength I located at p = b
in the plane z = 0. This is a model for a thin and narrow solenoid which
completely encircles the rope. This source 1s the dual of the magnetic
current ring or thin toroidal coil which was considered previously [9].

The time dependence is exp(iwt) for all source and field quantities.

Due to the symmetry of the source and the rope, the fields are TE to z
(Transverse Electric) and independent of ¢. The electric field has only
a nonzerc azimuthal component Egr, and the magnetic field has only nonzero
axial and radial components Hzr and ng. The superscript pr denotes the

fields in the absence ¢f the void. Since the dual problem of the magnetic
ring source has already been solved [9], the fields of the electric ring
source can be obtained by duality [10]. The resultant expressions for the
primary fields both inside and outside the rope are given in Appendix A.
The axial magnetic field Hzr is nearly independent of p inside the rope
for sufficiently low frequencies. On the other hand, ng and EPT are zero

¢

at the rope center p = 0. For the D.C. limit (w=0), EPT is zero everywhere.

¢
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Induced Dipole Moments

To allow comparison between the toroid {9] and solenoid excitation, we
again select a thin prolate spheroid in order to model a broken strand. As
indicated in Fig. lc, the spheroid has conductivity Gv’ permittivity €y
and permeability M- We also allow a rotation of the major axis of the
spheroid about the p' axis by an angle o in order to account for the winding
geometry of the rope. Consequentl;?'the major axis is oriented at an angle
@ to the unit vector 2' and an angle m/2 + a to the unit vector 6'.

The prolate spheroidal void model is a convenient one because the elec-
tric and magnetic polarizabilities are known [11]. The electric polarizabil-
ities for the incident electric field applied along the major axis, ot ., Or

ma j
. . e .
along the minor axis, amin’ are given by

e
amaj = -V(GW—OV) (1)
and
e ) —2V(0w—ov) )
min ~ 1+0 /o ’ (2)
v Cw

where V is the volume of the thin prolate spheroid. Displacement currents
have been neglected in (1) and (2), but they can be included merely by re-
.. s . ) R o § . zabilitios
placing Ow by Ow t+ twe and Ov by Uv + fwe . The magnetic polarizabilities
for the incident magnetic field applied along the major axis, a:aj’ or along

. . m .
the minor axis, amin’ are given by

m = _us _
amaj = Vlw(uw uv) (3
and
o ~2V1w(uw—uv)
%pin T 1+ u / (4)
u,H,

Although the polarizabilities in (1)-(4) are derived for a thin prolate
spheroid, we would not expect a significant difference for a thin circular

cylinder of the same length and volume.
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In order to compute the induced dipole moments, it is necessary to
first resolve the incident electric and magnetic fields into components
along the major and minor axes. The resultant dipole moments can ther be
resolved into the more convenient p, ¢, and z components. When this is

done, the induced electric dipole moments are found to be

_ ppr, e e

(Ids)Z E¢ (amin amaj)sina cosa , (5)
= pPT /. € 2 e s 2

(Ids)¢ E¢ (amincos o + amajs1n a) |, (6)

(Ids)p =0 (7)

The induced magnetic dipole moments are found to be

(kdp) = HZ'f(aQajgosza +o sina) (8)
(KdSl)¢ = Hzr(agin - uzaj)sina cosa (9)
(Kd0) | = B"’af‘:‘lin : (10)
In (5)-(7), the primary field components EPT Hpr, and ng are evaluated

d’ 'z

at p', ¢', z'.
External Scattered Field

The total scattered fleld can be written as a superpoéition of the
contributions from each of the six induced dipole sources given in (5)-(10).
(Actually, there are only five nonzero sources since (Ids)p is zero for the
specific configuration considered here.) The scattered magnetic field com-

ponents H;c(p,¢,z), Hsc(p,¢,z), and Hzc(p,¢,z) are of particular interest

¢

when small coils are used as sensors. However, the scattered electric

SC

¢

puted with little additional effort. The ¢-averaged value of E

field components E§°<o,¢,z>, E; (0,9,2), and E °(p,¢,2) can also be com-

sc

¢

is of
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interest when a solenoid which completely encircles the rope is used as a
sensor.
Both the magnetic and electric scattered fields can be compactly

written in the following matrix form:

i SCT B e e e ] [~ ] [ m m m 7] B 7]
H ¢ ¢ 1d G
o S0 Sp¢ oz (1ds), oo Spo Cpz (kd2),
SC e e e m m m
B¢ | = | 6% 6%, ¢ 1d + lc ]
6 oo Coo Coz | | (149D o0 Coo Cpz | | KWy | (D
8SC e e e m m m
LHZ chp Gy Co, (Ids)zd Gpo a4 O L(Kdl)z
and
PESC_1 —Fe Fe, rS ] —(Ids) ] rF“‘ D ] —(KdﬁL) ]
p pp PP pz p pp " pd pz P
SC e e e m m m
ES¢ = |F® F% ¥ 1d + [F™ . F
b o0 Too Toz | | (199 oo Too For | | KMy | OD
sC e e e m m m
E
| 2 zp Fz¢ Fzz (Ids)z ] Csz Fz¢ Fzz (Kdz)z

In the first 3 by 3 matrix, Ggp is the p component of H at (p,¢,z) produced

by a unit p-directed electric dipole at (p',¢',z'"), GZ¢ is the p component

of H produced by a unit ¢-directed electric dipole at (p',¢',z'), etc. The
second 3 by 3 matrix is similar except that the c" elements correspond to

unit magnetic dipole sources. For the cylindrical geometry encountered

here; all the matrix elements can be derived from z components of electric

and magnetic Hertz vectors [12], and the specific expressions for the G elements

have been given previously [9]. The expressions for the matrix elements

in (12) are derived in Appendix B. The ¢-averaged value of ESC which is
¢
of interest for solenoid reception is defined as
sc 1 Zm sc
By = 37 | Ey (P:9,2)d0 . (13)
o

The specific form of E;C is also given in Appendix B. Of course, instead

of (13), one could also obtain E-C by integrating the flux over the area of

¢

the wire loop, but the present approach is simpler and more convenient.
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Numerical Results

Numerically efficient computer programs have been written to evaluate
the scattered fields as given by (11) and (12) and the primary fields as
given by (A-5)-(A-7) for a < p < b and by (A-9)-(A-11) for p > b.

In Figs. 2, 3, and 4 the magnitudes of the three scattered magnetic
field components Hzc, Hic, and Hzc are shown plotted as a function of ¢ for
a selected set of the parameters. The vertical scale is in per cent of the
primary axial magnetic field Hzr running from 1073% to 1%. The volume of
the small slender void V is taken to be 10=% m®(= lmm X Imm X lcm) and the
void itself is oriented in the axial direction (i.e. 0=0°). Since the scat-
tered fields are proportional to V, the curves are easily scaled to other

values of V. Also, the constitutive parameters of the void are taken to be

1] -
those of free space: €, = Eo’ Uv = 0, and “v = M- In these cases, ¢' is

taken to be zero, but for ¢' not equal to zero, the horizontal axis can
simply be replaced by ¢ - ¢'. Other selected values of the parameters are:
a=1lecm o =1.1x 10% mho/m, W /W = 200, b/a =2, p'/a = 0.5, z'/a =
3.75, p/a = 2, z/a =5, f = 10 Hz.

The magnitudes of the individual dipole contributions to the total
scattered field are also shown for each component of H in Figs. 2, 3, and 4.
Since o is zero, there are only three induced dipole moments (de)z, (Kdl)p,
and (Ids)¢. As expected, (KdR,)Z is the major contributor. (Kd,Q)p is small
because ng is very small inside the rope.

Actually, for solenoid reception, the value of ES® is of primary impor-

¢

tance. In Fig. 5, we also show the ¢ dependence of E;c for three values of

p'/a for z'/a = 5. Of course, the greatest ¢ variation occurs for the void

near the surface (p'/a = 0.9). In Table I the normalized averaged scattered

azimuthal electric field ,ESC/Epr[ is shown for the same parameters which were

¢ 9
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used in Figs. 2-4. This is the quantity which indicates the sensitivity of

sc,_Ppr ,
the solenold sensor used in present systems. The values of |E¢ /Eg l are typi-

cally rather small (= .01%). Note in Fig. 5 that lE;C/E$r| has a comparable

level for p'/a = 0.1, but a much larger level for p'/a = 0.5 or 0.9. This

sc . . sc
which do not contribute to E, .

¢ ¢

It is also the case that the normalized scattered magnetic field components

is due to the higher ¢ harmonics in E

have a higher level because of the higher order harmonics in ¢ for p'/a # 0.
Concluding Remarks

Excitation of a wire rope containing a slender void has been analyzed
for a thin solenoid source. The prolate spheroidal void has been shown to
produce an anomaly in the external fields which is typically larger than
that produced for the case of toroidal excitation [9]. Again, the external
scattered magnetic field components (not shown here) have a rather compli-
cated azimuthal dependence containing some peaks and nulls. This suggests

that multiple sensing coils of various locations and orientations might be

worthwhile.

The ¢-averaged value of'the scattered azimuthal electric field Ezc
has also been examined. This is the quantity which is sensed by a solenoidal
sensor which encircles the rope, and Burrows [15] has also examined this
quantity. This scattered field is typically quite small compared to the
primary field as indicated in Table 1. Of course, the solenoid sensor does
not make any use of the higher harmonics in ¢ which can be considerably
larger than the ¢-averaged value. However, a possible advantage of the

. : sc . . .
solenoid sensor is that E is not highly dependent on the void location.

¢

Thus the anomaly is related more to the void's volume than location. A

system which senses the scattered field directly without any ¢ averaging
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will detect a greater anomaly when the void is located near the surface of

the rope.

On the basis of calculations at other frequencies, one general con-
clusion is that 10 Hz is a good choice. Higher frequencies suffer from
poor penetration of the rope. Also, the exciting solenoid and the sensors
should be located as close to the rope as possible to maximize the relative
scattered field.

The individual contributions of the various induced dipole moments to
the scattered field are illustrated in Figs. 2-4. As expected for solenoidal
excitation, the induced axial magnetic dipole moment is the dominant con-
tributor to the scattered field. Actually, this dipole moment requires
that the magnetic permeability of the rope be different from that of the
void. In fact, calculations show that if the rope is nonmagnetic, the
effect of the anomaly is quite small because only an electric dipole moment
is induced.

A further worthwhile study would be to examine the response as a func-
tion of void location for a fixed geometry of the sensor. Some additional
calculations, in a computer print-out format, that can give such information,
may be obtained from the authors on request.

Although we have only examined the thin prolate spheroidal void, we
have derived expressions which are useful for other shapes. The only re-
quirement is that the imperfection be sufficiently small that its scattered
fields can be represented by induced electric and magnetic dipole moments.
Another convenient imperfection to treat would be an oblate spheroidal im-
perfection which could model a region of corrosion. Also, it might be
possible to treat a rope model where the conductivity and permeability are
tensors. This anisotropic feature of ropes is expected because of the

winding geometry; the subject has been examined by Wait [16].
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Appendix A - Primary Fields

The primary fields for excitation by a magnetic current ring of
strength K have been derived previously [9]. By duality [10], the pre-
vious results hold for electric current ring excitation if we make the
following transformations: K - I, ng > Egr, Ezr > —Hzr, Egr - —ng, Ho >
Eo’ Eo > uo, iwpw d Gw + imew, and Ow + imsw > iwpw. The resultant primary
field expressions take different forms in the three regions, p < a, a < p

< b, and p > b.

Inside the rope (p < a), we find

co
Hzr = _ f wzaolo(wp)exp(—ikz)dk , (A-1)
ng =- iAwaoII(wp)exp(—iAz)dk , (A-2)
-0
Egr = i -i waoIl(wp)exp(~iKz)dX s (A-3)

- 2,25 2 _ - .
where w A+, v iwg (o +iwe ), and Io and I, are zero and first

1

order modified Bessel functions. The factor a, is given by

' -1
_YoBo YoKo(ua) %o

8 = uK (ua)  n_ ? (a-4)

wzan(wa)Ko(ua) o o
where

IbKé(ub) 2k

Bo = Toma 0 v R

_ . L _ L
Y, = fw(e)” , n = (uo/e:o) ,
o imuw lewa)
o w Io(wa) ?

K  is a zero order modified Bessel function, and prime ' denotes differen-

tiation with respect to the argument. (In the previous paper [9], the
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expression for Bo should actually read B, = —KbKé(ub)/(Zﬂu)).

In the region between the rope and the source (a < p < b), we find

HP*
Z

uP*
o

o]
o
Lo}
]

where

Io(ua)

iwy
uO

- f uz[BOIO(up) + CoKo(up)]exp(—iAz)dA,

—~C0

- f iku[BoIl(up) - CoKl(up)]exp(-in)dk s

-—00

—] u[B_I,(up) - C_K, (up)]exp(-irz)dr

Ié(ua)

Io(ua) -

Ko(ua)

Outside the source (p > b), we find

BT =
A
-=00
o
WP =
e —oo
pr _
E¢ imuo

where

Ké(ua)

u Ko(ga) -

- uZAoKo(up)exp(—iAz)dA ,
f iXquKl(up)exp(—iAz)dX ,

[ uA K| (up)exp(-irz)dx

Ao =C, - BoIl(ub)/KI(ub).

(A-5)

(A-6)

(A-7)

(A-8)

(A-9)

(A-10)

(A-11)

(A-12)
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Appendix B - Scattered Electric Fields

The derivation for the electric fields produced by a dipole source
within a wire rope is a direct extension of the derivation of the magnetic
field derivation given previously [9], and some of the details are excluded
here. The external fields can be obtained from U and V which are the z

components of electric and magnetic Hertz vectors

U= F[Um] and Vv = r[vm] , (B-1)
where

U, =S MK (wp), V_ =T (VK (up) , (B-2)
and

[ 1= [ J [ Jeim@oD 1A(z=2Dy (B-3)

The expressions for Sm and Tm have been given for each of the six dipole
types [9].

The electric field components can be written

E, = T[Epm], E¢ = T[E¢m], and E_-= F[Ezm] , (B-4)
where
U WU m
- m o
B 1A 55 o Va
(B-5)
Wom b [
= - \J -
= iAuSme(up) : Tme(uD) ’
-mA BVm
Fom T Tp Un T Mo 5p
(B-6)
= ™ g ¥ (up) + i T _K' (up)
P mm up e ?
and

= -— = — 2 —
E u Um u Sme(up) . (B-7)
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We are now able to define the matrix elements required in (12) in terms
of Ep’ E¢, and Ez given in (B-4). For each of the six dipole types, we can
define the required three matrix elemeats in a column matrix as follows.

For a radial electric dipole (Ids)p, we have

e | E ]
PP p
e 1
-F = [ B_8
40 @y, | B (B-8)
Fo E
L zp L VA
For an azimuthal electric dipole (Ids)¢, we have
. 1 _ T
e
F E
pd o
e 1
F = E B-9
" sy, | % (B-9)
e
| "2 | "2

For an axial electric dipole (Ids)z, we have

po - =

Fe E ]

pz o

e _ 1
Foz | = (Tas), By (B-10)
F¢ | E

ZZ-J Z

For a radial magnetic dipole (Kdl)p, we have

- - _
F“‘ E 1
pp o
m 1
Foo @y, | o (3-11)
m E
zp z |

For an azimuthal magnetic dipole (Kd2)¢, we have
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M o | C ]
m
F E
P9 o
m 1
F = o E B-12
96 @, | o (B-12)
m
LFZ¢ bEz
For an axial magnetic dipole (KdQ)Z, we have
o ] E -l
z p
|l o= L e (B-13)
z (Kdﬁ)z ()
LFZZ LEz
- -
The ¢-averaged value of E¢ as given by (B-4) can be written
_ 1 2m
By = 37 £ E¢dd‘>’= PO[E¢OJ (B-14)
where
1..0[ ] - f [ ]e—l}\(z-z )dl
and
—_ (] |
E¢0 = dwp T K'(up) .

O 0O

As expected, only the m = 0 term of the electric Hertz vector contributes
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Table 1 - Normalized E>C

¢
Parameters* L |E$C/Egr| (%)
Same as Fig. 5 .01044
p'/a = 0.1 .00986
p'/a = 0.9 . 01472
z'/a = 1.25 .01068
z'/a = 2.5 ' .01058
z'/a = 3.75 ‘ .01068
a = 15° .01107
o = 30° .01279
f =1 Hz .01025
f = 100 Hz .00943
f = 1000 Hz .00009
pla = 1.1 .01229
pla = 1.5 .01124
o, = 10° mho/m .01025
o, = 107 mho/m .00993
uw/uo = 50 .02046
uwluo = 10 .03367
w g, =1 .00003
b/a = 3 .01041
b/a = 4. .01039
zfa = z'[/a = 2.5 .01049
zfla = z"/a =10 .01039
p/a = bja = 1.1 .01229
p/a = b/a = 1.5 .01125
pla = bja = 3 .00937
p/a = b/a = 4 . 00851
a=2cm .00143
a=2.5cm .00073

*
Parameters for each entry are the same as Fig. 5 except where noted.
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Section 9

Dynamic ELECTROMAGNETIC PESPONSE
oF A HomogeENEOUS CoNDucCTING CYLINDER
FOR SYMMETRIC EXCITATION

DAVID A. HILL
and

JAMES R. WAIT

Abstract-A stranded wire rope is idealized as a homogeneous
conducting and permeable cylinder of circular cross section and
of infinite Tength. The rope is excited by a coaxial solenoid or
finite length multi-turn coil that carries an azimuthally direc-
ted alternating current. The rope and the enclosing solenoid may
have a uniform velocity relative to each other. Using a non-
relativistic analysis, the nature of this dynamic interaction is
examined and numerical results are presented for parameter values
that are relevant to both static and dynamic conditions in non-
destructive testing of such cylindrical conductors. It is shown
that even for motional velocities v as high as 10 m/s the dyna-
mic interaction with the rope specimen is not appreciably modified

from that for the static condition (i.e., for v = 0).

INTRODUCTION

The nondestructive testing of metallic structures often utilizes the in-
teraction of electromagnetic fields with the specimen {1,2]. A particularly
good example is a steel stranded wire rope such as is used in mine hoists. In

this case it may be desirable to test the ropce under dynamic conditions such _
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that the sensor and the rope have a uniform velocity relative to each other.
It is the purpose of the present paper to examine the effect of the motional
velocity on the nature of the electromagnetic fields excited by a coaxial

solenoid or finite length coil that carries an alternating current. We also

consider the mutual impedance between two solenoids that are both coaxial with
’the rope. Such a configuration is quite common in testing both solid and tu-

bular conductors.
FORMULATION

We consider a simple model; the rope is treated as a uniform cylindrical

structure of radius a. It is excited by a current-carrying concentric sole-

noid of radius b as indicated in Fig. 1. Cylindrical coordinates (p,¢,z)

fixed within the rope are chosen such that the surface of the cylindrical con-
ductor is p = a while the solenoid is idealized as an azimuthal current sheet of
axial length £ located at p = b. The solenoid is taken to be moving with a uni-
form velocity v in the positive =z direction relative to the rope frame.
(py$,2). Azimuthal variations of the fields are assumed to be negligible
which 1is the case when the azimuthal current is constant and the rope is lo-
cated concentrically within the solenoid.
The solenoid current surface density in amperes/meter at p = b is speci-
fied to be
j¢(z,t) = Real part of (NI/£)exp(iwt) a)

/ for (£/2) + vt > z > (-£/2) + vt and zero outside this interval. Here N is
the total number of turns that are wound uniformly throughout the axial length

/ £ of the solenoid. 1 is the magnitude of the current. The angular freguency

is w and t 1is the time. Now it is not difficult to show that
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_ NI [ sin(A%/2) -iXz _iAvt int
(z,t) = > O e e dX e (2)

00

)
where it is understood here and in what follows that we take the real part
of the indicated complex quantity.

We are now interested in the interaction of the fields from this primary
current with the conducting cylinder. While the analysis can be carried
through quite rigorously by using the full-blown Lorentz transformation [3,5],
here we will use a nonrelativistic approach [6] that is jusFified when terms
containing v2/c2 are negligibly small. This will certainly be the case in
any practically realizable remote sensing scheme [e.g., even for a motional
velocity v = 100 m/s, v2/c2 = 10_13 where ¢ = 3 x 108 m/s]. Also we will
assume that the fields in the region external to the rope are quasi-static
in nature. This is justified when the significant dimensions of the sensor
and the rope diameter are small compared with the operating free-space wave-
length Xo[e.g.,at a typical operating frequency of 10 Hz the XO = 3 x 107m].
In this context it is worth pointing out that |kl~1, where X is the axial
wave number, should also be small compared with RO over the significant range

of the integration variable A.
EXTERNAL FIELDS

In view of our assumptions the fields in the region p > a can be ob-
tained from a magnetic type Hertz vector that has only a 2z component

Ho(p,z,t) which satisfies Laplace's equation

2
19 d ) B
(Ea—ppss+;z>“o“° <

Taking a cue from (2) we construct the following appropriate integral form

for I as :
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T_(p,z,0) -—-fﬁoo,p)e‘i“ A AN g %)

where, in view of (3), ﬁo must satisfy

3 8 2
1 S
Suitable solutions are

M, = BOOI_([A]p) +,GOK (|X[p) for a < p < b (6)

and - ‘
= D(A)Ko(lxlp) for p > b. : (7

whenzIo and K0 are modified Bessel functions. The particular form Ko(lklp)
is dictated in the region p > b singewit vanishes exponentially for all posi-
tive and negative real values of A when p * ®, ' Then, to assure field matching
for all ), the other Bessel functions in the air region must have the same
argument. The functions B, C and D mre yet to be determined.

The field components in the rggdgn P > b can be obtained from

2

= 8
Hop 9" _/3p3z (8)

= 2 / p
Eo¢ UDB Ho,atap 9)

and
H = 3% /327 (10)
oz )

The corresponding integral representations are

— o +00'—A .
HOp Hop(k)
3 ~ -idz i(w + Av)t
Eo¢ = Eo¢(X) e e dA 11)
LHOZ_ - Eoz(x)_
where
HOO(A) = —iXBHO/BQ 12)
E0¢(A) = iuo(m + Av)ano/ap 13)
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\ and

A 24
H Q) = -2 L. (14)

‘ We are now in the position to apply the source conditions

‘ Ho, (b = 0) =~ B (b +0) = j,(z,t) (15)
\ E0¢(b -0) - Eo¢(b +0) =0 (16)
and the impedance condition
[?0¢(A) = —Z(A)Hoz(lﬂ (17)
p=a
where Z()A) is discussed below. Thus we deduce that
B NIb sin(A2/2) :
B(A) = - W—W Kl(l)\lb) (18)
‘ BOY _ iu (v + MWK, ([A|a) + |x|z(x)1<o(lxla) (199
c()) ip (w + AW (JA]a) - |A12(A)10([XT5)
\ and
DY) = C) - BT, (JAb) /K, (JA]b) (20)

Here we have made use of the Wronskian relation

I OOK, ) + 1,00k (0 = 1/x. (21)

SOLUTION FOR INTERNAL FIELD

\ Now we must specify the internal structure of the cylinder in order to
obtain an explicit expression for Z(A). For present purposes we will assume
homogeneity with a conductivity ¢ and magnetic permeability u. Displace-
ment currents in the cylinder are also neglected.

\ The fields within the cylinder (i.e. p < a) can also be obtained from
an azimuthally independent magnetic Hertz vector that has only an axial com-

ponent II. 1In the rope frame (p,d,z), it satisfies the time dependent wave

equation
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© |
|l

P
Bpp

(

The corresponding integral form is

2

RN ou §~)II= 0 (22)
2

0z

Az ei(u) + Av)t

4o
M(p,z,t) = fﬁ(l,p)e_i dx (23)

~

where Il satisfies

109 9 2\ %
290 Lo _ - 24
<p 50 p 50 w ) i 0 (24)

where

w = [Az + iou(w + Xv)]%

The field components in the region p < a are obtained from

" = 321 /309z (25)
E, - 1a21/3t3p (26)
and 2
. 2 2 (27)
i, = (‘0“ ac )" ;
oz

The corresponding expressions for the field components are then

+oo

Hﬂ )
5, | - %¢(x) iz 1L+ AVt 4y (28)
H | o oS
where
ﬁp(x) = —ixafi/ap (29)
E¢(x) = ip(w + Av)al/3p (30)
H O = —w21 (31)

The appropriate solution of (24) that is finite at p = 0 is clearly

= AT (wp) (32)

where A()) is determined below.
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Thus, we readily deduce that

B,V /H,0) = 200 = 1w + AT, (wa) /T (wa) (33)

This completes the specification of the ratio B(A)/C()\) as given by (19).
Also since ﬁoz and ﬁz are continuous at p = a,we ascertain from (4) and (31)

that

A0 = AFAAYBOT_([A]a) + cOOK (JA]a)1/1(wa) (34)

The fields everywhere in the (p,9,z) frame are now given in terms of the
known parameters of the problem.
->
To express the fields Eé and ﬁé in the (p,¢,2') coordinates in the frame

of the solenoid we need to apply the transformation law

' =F + n vi % 1H (35)
(o] [o] (o] z o
and > > > ->
H' =H - ¢vi XE (36)
[o] o o] z (o]

-

where iz is a unit vector in the positive 2z direction. These forms are valid
for the external region p > a; the corresponding forms for p < a are similar.
The important point is that the axial magnetic field is not changed as a re-

sult of the uniform axial motion.
RESULTS FOR INTERNAL FIELD

In any non-destructive testing scheme the internal field of the sample
interacts with the material properties and, in turn, produces a secondary
field that is detected in the external region [7]. Thus, it is of interest
to examine the internal axial magnetic Hz at some fixed distance z' from the
solenoid as indicated in Fig. 1.

The field in question is given by

40
Ho= - f wPa)e e A AV G, (37)

2 ~
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Now z = z' + vt if the solenoid is located at z = 0 at t = 0. Thus we have

simply that

Vi 2 iz’ iw
H o= - [wPamye ™% an - ot (38)
Z ~0D0

The v dependence is contained entirely in A(A) that is defined by (34) where
B(A) and C()\) are given explicitly by (18) and (19).

The integration over A indicated by (38) is performed numerically using
a variable step size in order to deal effectively with the relatively rapid
variation for small values of IAI. In general, at least for the case v # 0,
the integrand is not an even function of X so the integration must be carried
out over the full range of A from -x to +~, Here we maintain the requirement
that Re. w > 0 or that w tends to !Al as A tends to + ©. Some results for
[Hzl plotted as a function of z' are shown in Figs. 2 through 9 where the curves
are normalized by choosing NI = 1 ampere as the teotal current in the sole-
noid. Positive values of z' correspond to points that are ahead of the sole-
noid in the sense that the solenoid is moving with a uniform velocity v 1in
the positive =z direction relative to the rope. Of course the results
apply to the special case when the solenoid is fixed and the rope moves with
a relative velocity v 1in the negative =z direction.

In each of the curves for IHZ] shown in Figs. 2 through 9, the rope radius
a = 2 cm, the solenoid radius b = 2.5 cm,and the solenoid length £ = 2 cm.
We then choose various values and combinations of the following parameters:
operating frequency w/27m, rope conductivity G, rope magnetic permeability
(relative to free space) u/uo and the velocity wv.

In Fig. 2 we consider the case of a solenoid that is stationary with
respect to the rope (i.e, v = 0) and illustrate the effect of frequency on

the field |H7l at the surface of the rope, p = a. Here u/uo = 200 and
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g = lO6 mho/m. As expected the curves are symmetrical about z' = 0. 1In

each there is a pronounced peak within the region of the solenoid which again
is not surprising. However, there is an enhancement of the peak for the A.C.
cases (i.e., f = 10 and 100 Hz) over that for the D.C. case (i.e., f = 0).

At 100 Hz this is particularly noticeable since the magnetic flux is being
excluded from the interior of the rope. 1In Fig. 3 the corresponding curves
are shown for]HZ[at the center of the rope, p = 0. Here we can see that,
particularly at 100 Hz, the field magnitude is much reduced which is consis-
tent with our statement above.

In Fig. 4 we now illustrate the influence of the motional velocity on the
field Hz at the surface p = a for frequency f = w/27 = 10 Hz, rope conducti-
vity 0 = 106 mho/m and a relative permeability u/uo = 200. The three cases
shown are for rope velocities v = 0, 10 and 50 m/s. The corresponding results
are shown in Fig. 5 for the internal field at the rope center p = 0 where
there is a decided "delay" of the buildup of the field magnitude; this effect
becomes quite appreciable at v = 50 m/s.

In Fig. 6 we show the influence of the relative permeability u/uo for
the case p = 0, £ = 10 Hz, v = 0, and for 0 = 106 mho/m. The curves are
particularly peaked when p/uo = 1 corresponding to a nonmagnetic metal but
the maxima become smoothed out as u/u0 increases. Corresponding results are
shown in Fig. 7 for v = 50 m/s. Again these show the pronounced 'delay" of
the maximum which we might describe as a hydromagnetic drag.

In Fig. 8 we illustrate the influence of the rope conductivity O on the
internal field for the case where v = 0, f = 10 Hz and u/uo = 200. Not sur-
prisingly there is a progressive decrease of the field magnitude as ¢ in-
creases from 105, to 106, to 107 mho/m. In the latter case the attenuation

is quite severe. The corresponding curves are shown in Fig. 9 for a motional
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velocity v = 50 m/s. Again we have a good illustration of the hydromagnetic

drag effect that is particularly evident for ¢ = 106 mho/m.
MUTUAL IMPEDANCE FOR COAXTIAL SOLENOIDS

In various wnondestructive testing schemes for wire ropes and similar
tubular metal specimens the mutual impedance between two coaxial solenoids
is measured. Such a configuration is depicted in Fig. 10 where we can spe-
cify that the bottom solenoid is excited by a current I and the induced
voltage V' is measured in the upper solenoid. Both solenoids have a fixed
separation s and they move in the upward direction with a velocity v rela-
tive to the cylindrical rope. For convenience we select both solenoids to
have N turns uniformly spaced over a length 2. Clearly the voltage v' is

to be obtained from

s + /2
- 27bN ' ' '
V' = f Bly(bsz',0)dz
s - /2

where
' ' - ' '
Eo¢(b,z ,t) Eo¢(b,z ,t) + vuoHop(b,z ,t)

Then if we define the mutual impedance Z; according to

t

Yo iw
Zm V'/(1e )

it follows readily that

I 2
' . 2.2 AR[2 -iA
Zm = 1UO(JJb N f [%ésl] Kl(l)\!b)e s

x [1,(|A]b) = (C/BYK, (|A]b)]dA
where C/B is given explicitly by (19). 1In the limiting case where the rope

is absent we have the simpler formula

o0 2
T P 2.2 sin(0%/2) i
Zm iXO 21p0wb N —41}—?XE7§7{]K1(Ab)II(Rb)cosksd)
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Here Xo is the free-space mutual reactance between the two solenoids.
The quantity we consider for the final numerical examples is the nor-

malized response defined by the complex ratio (Zé - iXO)/XO. In Fig. 11 the

real and imaginary parts are plotted as a function of frequency from 1 to

1000 Hz for the following parameters: v = 0, a rope radius a = 2 cm, ra-

dius of both solenoids b = 2.5 cm, rope conductivity g = lO6 mho/m, rope
permeability p/uo = 200. The two sets of curvesin Fig. 11 correspond to

s = 0 and s = 4 cm. In the first case of zero separation we are dealing with
the self impedance of one solenoid whereas in the second case the solenoids
are distinctly separated. 1In both situations it is evident that the imaginary
part considerably exceeds the real part at the lowermost frequencies. The
corresponding results for a motional velocity of v = 50 m/s are shown in

Fig. 12. Now we must distinguish between positive and negative values of s
according to whether the 'receiving"” solenoid is above or below the "trans-
mitting" solenoid, respectively. The marked changes between the curves in
Figs.-1l and 12 are entirely due to the difference between motional veloeity

of zero and 50 m/s. It is particularly significant that in the latter case
the reciprocity theorem is violated but such an effect is really not unexpected
because of the lack of symmetry in the problem.

Finally, in Fig. 13, the normalized response at 10 Hz is plotted as a
function of the motional velocity v from 1 to 1000 m/s for the three conditions
s = 0, +4 and -4 cm. Otherwise the parameters are the same as before. These
curves show very clearly that, for v somewhat less than 10 m/s, the influence
of the relative motion is negligible. 1In fact if v = 1 m/s the curves have

reached the v = 0 asymptotes.
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CONCLUDING REMARKS
The electromagnetic fields induced in the cylindrical specimen or rope
are seen to be influenced by the relative motion of the sensor. However,
the effect is quite small unless the motional velocity is on the order of
10 m/s or higher. The same conclusion would apply to more complicated rope

models if the average properties and geometrical dimensions are of the same

order.
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Fig.

Cylindrical Conductor of radius a excited
by a concentric solenoid of radius b that
has a velocity v relative to conductor. In
examples that follow, a = 2 cm, b = 2.5 cm
and £ = 2 cm.
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Fig. 10. Coaxial solenoid arrangement that
moves with velocity v (upwards
in figure) relative to cylindrical
conductor or rope.
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Fig. 12. Normalized response for v = 50 m/s and other

1000

conditions as in Fig.

11.
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Fig. 13. Normalized response for coaxial sensor a function of v for
f =10 Hz, 0 = 10% mho/m and U/uo = 200, s = 0, -4 and +4 cm.






