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FOREWORD

This report was prepared by the National Bureau of Standards,
Boulder, Colorado, under USBM Contract No. HO 133005. The
contract was initiated under the Coal Mine Health and Safety
Research Program. It was administered under the technical
direction of the Pittsburgh Mining and Safety Research Center
with Mr. Howard Parkinson and Mr. Harry(DoErows&;‘acting as
the technical project officers. o

This report is a summary of the work completed as part of this
contract during the period June 1973 to June 1974. This report
was submitted by the authors in September, 1974.
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SURFACE MAGNETIC FIELD NOISE MEASUREMENTS
AT GENEVA MINE

by
J.W. Adams, W.D. Bensema, N.C. Tomoeda

Measurements of surface magnetic field noise were
made at various locations over the Geneva Coal Mine
near Price, Utah, on June 12, 1973. The locations
selected were on the surface cver emergency locator
beacons underground at depths between 350 meters
(1150 ft.) and 488 meters (1600 ft.). The surface
terrain where these measurements were made was
mountainous, and access was difficult. There were no
power lines within several miles, and the weather was
clear; therefore, the magnetic noise levels were about
as low as will normally occur.

Results of measurements of distant sferics indi-
cate rather sharp cutoff frequencies below which broad-
band, impulsive noise is attenuated. The mechanism
of propagation for this noise above the daytime cutoff
frequency of 3500 Hz and the nighttime cutoff frequency
of 1700 Hz is deduced to be a waveguide formed by the
D or E layers of ionosphere as an upper plane and the
earth as a lower plane.

The measurement systems used are similar to those
used earlier. The technique is to record broadband,
analog signals, digitize the data, and use a fast-
Fourier transform to obtain spectral plots. This tech-
nique is novel in that it can measure simultaneously
all magnetic field energy within a limited portion of
the spectrum for a limited time, and, after processing,
reproduce the events occurring in that time interval
in great detail.

Key words: Earth-ionosphere waveguide; electromagnetic
noise; EMI measurement technique; sferic interference.

1.0 Introduction

Magnetic field strength measurements were made on June 12,
1973, over the Geneva Coal Mine in the Book Cliff Mountain
Range east of Price, Utah. The locations selected were on

the surface over emergency locator beacons underground at



depths between 350 meters (1150 ft.) and 488 meters (1600 ft.).
The surface terrain where these measurements were made was
mountainous, and access was difficult. There were no power
lines within several miles, and the weather was clear; there-
fore, the magnetic noise levels were about as low as will
normally occur.

The primary purpose of the measurements was to determine
surface magnetic field noise levels so that performance of
emergency subsurface locator beacons of the U.S. Bureau of
Mines could be better predicted. These emergency locator
beacons are located many hundreds of feet underground and
when activated, generate magnetic fields in a pulsed-carrier,
on-off mode for signaling to the surface, usually in emer-
gency situations. They operate at frequencies below 3 kHz
where signal attenuation through the earth is relatively low;
however, the beacon signals are greatly attenuated by various

effects, and surface noise becomes a limiting factor.

2.0 Measurement System

The block diagram of the field recording measurement sys-
tem is shown in figure 1. It consists of a balanced, shielded
loop antenna, balun, filter, and analog tape recorder. Later
in the laboratory, the analog signal is filtered, digitized,
fast Fourier transformed, and plotted on microfilm. See
figure 2 for the laboratory processing system. This gives an
output plot of one component of absolute magnetic field strength
versus frequency--a spectral plot. The transform may be
repeated to allow three-dimensional plots, where time is the
additional variable.

This system is described in more detail in the Robena

Mine report [1].



3.0 Earth-Ionosphere Waveguide Effect

on Propagated Noise

During the time the measurements were being made, there
were no visible thunderstorms or clouds anywhere in sight,
and hence, the atmospheric noise was largely that propagated
from distant sources. During daylight, strong sferics were
present, primarily above 3500 Hz, as shown in figure 3. At
night, sferics came in above 1700 Hz, as shown in figure 4.
A three-dimensional view given in figure 5 shows more detail
of the daytime structure. A similar plot in figure 6 shows
the nighttime structure. Note the 2500 Hz and 1900 Hz sub-
surface coal mine beacon signals in figure 5. The 1900 Hz
beacon is almost obscured by the atmospheric noise at night
(see figure 6). Notice the sharp cutoff of noise at 1700 Hz
at night and the more gradual cutoff at 3500 Hz during the day.
Ionospheric effects on radio transmission have been widely
studied for years, but these measurements with this new system
show some fresh insights into earth-ionosphere waveguide
phenomena. A dramatic and sharp increase in attenuation of
propagated atmospheric noise at frequencies below the waveguide
cutoff frequency (as mentioned above) has been observed. About
ten dB of signal-to-noise ratio may be gained by operating at
a frequency below the waveguide cutoff frequency rather than
above the cutoff, as shown by the one example in figure 6.

The probable propagation mechanism is a parallel plate

waveguide formed by the D or E layers of the ionosphere and
the earth. The TE or TM modes are excited between the
parallel planes and have a cutoff frequency of

nc

fczi—a—’n=1,2’.."
where c 1s the velocity of light, and a is the spacing between
the plates [2].



If a = 88 km, fC = 1704 Hz, 3408 Hz, ... . If the D
layer is about 50 km above the earth, and if the E layer is
about 100 km high [3], the cutoff frequencies calculated are
approximately correct. The height of maximum ionospheric
density may vary somewhat, and may not be the exact distance
needed for this model. This phenomenon should be further
investigated, as it relates directly to what frequencies that
should be used for the emergency locator beacons.

4.0 Other Measured Data

A map of the surface is shown in figure 7. Noise at
location Bl, 463 meters (1520 feet) over the 1900 Hz beacon,
is shown in figure 8. Noise at location Cl, 442 meters
(1450 feet) over a 1700 Hz beacon, is shown in figure 9.

All the remaining figures are of noise at location Al,
1150 feet over a 2500 Hz beacon.

Figures 10 through 18 show spectra of day, twilight, and
night noise to 10 kHz. Figure 13 shows a distant sferic.

Figures 19 through 27 show expanded spectra of day,
twilight, and night noise. These spectra are valid from
100 Hz to 3 kHz.

Data in figures 8 through 27 is absolute and has an uncer-
tainty of *+ 1 dB [1]. This uncertainty only applies over the
following frequency ranges: figures 8 and 9, 300 Hz to
2600 Hz; figures 10 through 18, 560 Hz to 10 kHz; figures 19
through 27, 100 Hz to 3 kHz. See section 9.0, Appendix, for
the code key to use in determining the meaning of the numbers
in the header block at the top of each spectrum. The resolu-
tion bandwidth is given on the ordinate of the plots.,



5.0 Conclusions

The surface noise at a remote site, away from powerlines,
will not be free of powerline harmonics; their amplitudes will
be reduced.

The earth-ionosphere may provide a waveguide to propa-
gate distant noise, particularly above 3500 Hz during the day
and above 1700 Hz at night. These frequencies are valid only
during the period covered by these measurements, as ionospheric
phenomena are quite time, geographically, and seasonally
dependent.

6.0 Recommendations

These limited results indicate that emergency locator
beacon frequencies should be selected below 1700 Hz and be-
tween harmonics of the 60 Hz powerline frequency.

Additional measurements should be made over a diurnal
cycle and during each of the four seasons. Higher gain baluns
and/or amplifiers should be used to lower system noise.
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9.0 AEEendix

Decoding of Spectrum Captions

Spectrum captions are generally organized into the fol-
lowing format:
First line: MP NDT NZS NDA NPO RC DF date, time, frame, serial,

where

MP = Two's power of length of Fourier transform, example,
2™ where MP = 12

NDT = Detrending option, example, 0 (dc removed)

NZS = Restart spectral average after output, example, 0
(restarted)

NDA = Data segment advance increment, example, 2048

NPO = Number of spectra averaged between output calls,

example, 20
RC = Integration time in seconds per spectra, example, 0.168
DF = Resolution bandwidth, spectral estimate spacing in
hertz, example, 62.5

Date
Time

Date of computer processing, example, 03/21/73

n

Time of computer processing, example, 15:06:34
Frame= Frame set number, example, 10

Serial = Film frame serial number, example, 42.

Second line: DTA DA(1) DA(2) DA(3) NSA NRP NPP, where
DTA

Detrending filter parameter a, example, 0.00195

DA(1) = Detrending filter average, K=1, example, 59.4

DA(2) = Detrending filter average, K=2, example, 0

DA(3) = Detrending filter average, K=3, example, O

NSA = Number of periodograms averaged, example, 20

NRP = Number of data points processed since spectrum
initialization, example, 43008

NPP = Number of data points processed since data initial-

ization, example, 43008.

34



Third line: RUN, SESSION, MONTH, DAY, YEAR Gain corr., rec. =
tot. constr. =, where
Run and Session = the title of the portrayed frame identifying
the digitizing session and run number,
example, 21 83
Month, Day, Year = date data were recorded in the mine,
example, 8 25 73

receiver gain correction, example, -6

Gain corr. rec.

tot. const. constant gain correction of entire system,

example, 46.4

Fourth line: C =, RG =, DG =, FG =, AG =, where

C = correction curve used with data, example, 25

RG = receiver gain and accompanying correction in dB added to
the data, example, 200 (-6 dB)

DG = digitizer gain, example, 0

FG = filter gain in dB, often rounded to nearest single digit,
example, 0

AG = absolute gain correction added to data, example, 52

Fifth line: Top of Scale, Standard Error, Spectral Peak, where

1

Top of Scale largest scale marking for computer drawn
graph, example, 1.000+004 (1.0 x 104)

standard error of curve, example, 0.3162

Standard Error

it

Spectral Peak largest spectral peak observed, example,

4.108+003 (4.108 x 10°)
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