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Abstract—Mine trailing cables operated above safe thermal

limits can cause premature insulation failure, increasing electro- Pe
cution and fire hazards. Previous U.S. Bureau of Mines Pittsburgh ~ |[~=——~~~ Reel drum

Research Center research showed that, under static test condi- T

tions, electrical current levels permitted under present regulations Cable
may not limit cable temperatures to less than the 90 C rating =

of reeled trailing cable. Continuing research under the National
Institute for Occupational Safety and Health (NIOSH) addresses

thermal characteristics of reeled trailing cable under dynamic Q

test conditions more representative of field conditions, where |
operators constantly reel in and pay out cable. This research is in AC FO DTS
support of efforts by industry associations and the Mine Safety Power Cable 80

and Health Administration to establish safety guidelines for

cyclically rated reeled machines. This paper describes a unique

approach to measuring temperatures within reeled cable underFig 1. Test setup
dynamic test conditions. Fiber-optic sensors embedded within = ™ '

the metallic conductors measure temperatures at 1-m intervals
along the entire length of cable. Temperature measurements argest conditions, including those that cannot be conducted in the

reported to be accurate to within +1 °C. The test setup requires|gporatory. Results showed that, under static test conditions,
access to only one end of the trailing cable, allowing researchers t

freely reel in and pay out cable while temperature measurementégx,cess've heating can occur for round trailing cables operated

are made, simulating field conditions. Manufacture of a fiber-USINg presently accepted derating factors. Results for flat

optic-embedded trailing cable is described, along with initial testcables showed the derating factors to be on the conservative

results that indicate the fiber-optic approach is viable. side. The success of this effort prompted the ICEA to request
Index Terms—Fiber optics, mine trailing cable, temperature. that the study of flat and round cables be extended to include

dynamic loads to provide a complete picture of realistic trailing

cable usage. Phase one of the current study involves round

trailing cables. Flat cables will be studied at a later date.

HE safe electrical operation of shuttle car trailing cables

depends upon maintaining electrical conductor tempera- Il. TECHNICAL APPROACH

I. INTRODUCTION

along the reeled cable. This approach becomes unworkable

A previous study conducted by the U.S. Bureau of MiDgs., the cable is constantly reeled in and payed out, as is
(USBM) supported ICEA efforts to establish appropriate Qe in practice, e.g., a shuttle car operated in a manner

ating factors for reeled coal mine trailing cables [3]. Empirigalyiar 1o a room-and-pillar scenario. Constant movement of

and theoretical models were established to simulate avariq}yeofra”ing cable would entangle the thermocouple leads and

increase the risk of electrocution by the energized conductor. A
new approach, using distributed fiber-optic sensors embedded
within conductors along the entire length of the trailing cable,

o . _can overcome these obstacles.
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the fiber-optic sensors are made near the ac power source
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the sensor breakout locations are reinsulated. The reinsulation

procedure and the electrical isolation provided by the fibety. 3. OTDR display.
optic cables minimizes risk of electrocution. The optical

signal is processed by a York DTS 80 distributed temperature

monitor. Temperature and distance data are then downloadgfk 1o tolerate high extrusion temperatures, and capable of
via an ARC Net link to a personal computer for logging angithstanding stresses associated with pulling of the cable. To
visual display. With this setup, the shuttle car can move freglyinimize special setup procedures, the overall diameter of the
without interfering with the data acquisition process. fiber sensor jacket should be compatible with standard cable
The DTS 80 is capable of measuring temperatures at dinnyfacturing dimensions. Operating conditions, such as the
m intervals along the entire length of a fiber-optic sensqfr,m diameter, temperature, and number of test cycles the
The sensing technique is based on temperature-depenqefifie is expected to endure over a six-month test period, must
Raman scatter of light pulses launched into the optical fibejisqy pe considered.
The standard DTS 80 is configured for communication gradegome of these fiber jacket design parameters are as follows:
50-:m core silica optical fiber, although other fiber options are
available. Distance measurements to localized hot spots along

the fiber are calculated after tracking the time it takes for initial extrusion temperature 18%;
scattered light to reach a photodetector. Although temperature  fina@l 3-1/4 hour cure temperature 13¢;
measurements can be made from a single end connection, OP€rating temperature oC;
maximum performance requires connection of both ends to ~ Pend radius 10 cm;
the instrument. For the shuttle car test setup, the “loop” was ~ approximate flex cycles 10000.

completed by installing a short fiber-optic jumper cable inside

the er_Jm. Qne of thre_e separate_z loops embedded in th_e tra"_in%ptical fiber protection options were proposed by various
cable is typically monitored during shuttle car tests. With th

| f. . luti h1-mi \'\é&gndors. One proposal consisted of two polyimide-coated,
igof fg” Iguration, temperature resolution at each 1-m inter -um core optical fibers contained within a polyvinylidene

fluoride (PVDF) loose tube buffer. A sample of this cable

was incorporated in a production run of a 4-AWG conductor.
lIl. OPTICAL FIBER INSTALLATION An optical time-domain reflectometer (OTDR) monitored the

The fiber-optic sensors must be protected in accordance wétitenuation characteristics of one of the optical fibers as the

the intended application. In this case, the fiber-optic sens@ensor cable was pulled through the machine. The OTDR
were embedded within a Tiger Brand 4-AWG three-conductdisplay showed intensity of back-scattered light as a function
ground-ground check (G—GC) trailing cable during the trailingf fiber length (Fig. 3). As the test run started, it soon became
cable manufacturing process. A fiber-optic cable containirggpparent that the fiber was undergoing excessive stress, as
two optical fibers replaced the center copper element of theiddicated by the signal attenuation between marketsé&nd
AWG conductors, as shown in Fig. 2. Outer copper elemerit8.” The problem was caused by excessive pulling tension
were wrapped around the fiber-optic cable as it was pullbétween the main capstan and a gear-driven takeup reel.
through the cabling machine. The cross-sectional areas Adthough a clutch adjustment to the takeup reel eliminated
the copper elements were adjusted to maintain the equival&mther problems, this experience suggested more substan-
cross-sectional area of a 4-AWG conductor. Insulation wésl protection was needed. An alternative design including
extruded over the fiber-optic-embedded 4-AWG conductatress-bearing Kevlar strands was subsequently chosen. In
The insulated conductor was then cut into thirds and extrudeds configuration, an inner tefzel loose tube isolates two
again to complete the final product. These manufacturing pmelyimide-coated 50:m core optical fibers from the Kevlar.
cesses dictate that the sensor jacket must be abrasion resisfemyuter tefzel tube protects the Kevlar strands from abrasion.



V. DIsSCcUSSION

46 ¢
I A distributed temperature measuring system based on fiber-
36 h optic technology allows researchers to safely monitor temper-
o atures along an energized mine trailing cable under dynamic
o 26 . test conditions. A fiber-optic-embedded test cable requires only
T one access point to measure temperatures to witiinC at
16 - 1-m intervals along the entire cable. As with most sophis-
& ticated instruments, a basic understanding of the underlying
; 6 7] technology is necessary to correctly interpret generated data.
- Special precautions are necessary to protect the fiber-optic
T sensor embedded in the trailing cable. An OTDR proved to
14 | | | , , | be a valuable quality assurance tool during the test cable
30 ot 152 213 274 335 396 457 manufacturing process. Initial shuttle car tests indicate the

DISTANCE, m fiber-optic approach is viable. Subsequent research will allow
quantitative assessment of thermal characteristics of reeled

Fig. 4. DTS 80 display. trailing cables under dynamic conditions.
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