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ABSTRACT: A computer analysis of bench stability has been developed to account for multiple occurrences of po-
tential dope-falure modes in discontinuous rock masses. Bench-scale plane shears and tetrahedra wedges are Smu-
lated and stochesticaly andyzed to estimate the probability of retaining specified catch bench widths. This geotechni-
cd information is useful in designing bench configurations to improve pit-dope sability and hep dleviate rockfdl

hazards.

1 INTRODUCTION

Thorough engineering andyses of mine dopes cut in dis-
continuous rock masses should include investigations of
bench stability and the likelihood of retaining servicegble
catch benches during the mine life. When bench stability
is contralled primarily by rock failures that dide dong
natura fractures (such as plane shears and tetrahedra
wedges), a sochastic computer andysis can be used to
evduae the probability of retaining specified catch
bench widths. If the origind dope geometry plan and
blasting layout are intended to produce catch benches of
acertain width, it is unlikey that such width actudly will
be retained after blasting and excavation when kinemati-
cdly viable rock falure modes are present in the
benches. Consequently, rockfall hazard assessment and
related dope Sability safety issues must consider the
predicted, operationa catch-bench geometry and not
the origindly designed, idedl geometry.

In fractured rock masses, bench failures most com-
monly occur in the upper portion of the bench, because
the fracture lengths required for failure are shorter here.
That is, smdl plane shears or wedges typically break out
aong the crest of abench, due to the higher probability
that natura fractures will be long enough here to form
kinematicdly viable fallure modes. This characteridic is
observed in mine benches, and it should be reflected in
the probabiligic outcome of a bench gtability andyss
Thus, the probability of retaining a full width on the
bench is not as high as the probability of retaining, say,
80% of the origina bench width. Probabilities of retain-
ing bench widths increase as the specified widths de-
crease. Only occasondly do longer fractures occur and
dlow for larger fallures to affect much of the bench face
and severdly diminish the catch width.

Minor bench ingabilities and rockfals adversdly im-
pact mine safety in two key arees. Fird, as falures

break back dong the top of a bench, storage Gapacity
for holding rockfdl debris is sgnificantly educed, and
fdling rock from above may not be caught and retained
on the bench. Second, as rockfdl debris spills onto the
bench below, it reduces the storage capacity of that
bench and may even trigger multiple-bench falures.
Thus, the capability to predict the Sze of bench failures
and their impact on the catch width would provide key
input to designing the bench geometry (i.e. bench height,
face angle, and width).

The Nationd Inditute for Occupationa Safety and
Hedth (NIOSH) Spokane Research Laboratory fo-
cuses on safety and hedlth issues in the mining ndustry.
A project began severd years ago amed a mitigating
rockfal hazards in open-pit mines and quarries. One
aspect of this project has involved the development of
computer software to andyze bench stability and back-
bresk characteristics in a hazard-based, stochastic
framework. One computer program andyzes plane-
shear fallure modes in a two-dimendond framework by
smulaing plane-shear fractures in the bench and then
cdculding the probability of stability for each one, as
well as identifying the corresponding backbreak distance
on the bench. By repeating the Smulation many times
for a given bench, the probability of retaining various
bench widths can be estimated. Another computer pro-
gram andyzes three-dimensond wedges by smulaing
fractures from two fracture sets and conducting a smilar
back-bregk andysis.

A stochastic (or probabilistic) approach is needed
because rock fractures in a bench face are numerous
and too difficult to andlyze individudly. For the com
puter model to generate redlistic fracture patterns and
subsequent  dope fallure modes, representative geo-
technicd input informetion must be available. This i+
formation often can be obtained readily from a thorough
geotechnicd Steinvedtigation.



2 GEOTECHNICAL INPUT

Stahility analys's of rock failure modes requires informe-
tion on the dope geometry, the physca properties of
rock discontinuities that define the modes, and loca en-
vironmental conditions (such as ground water pore pres-
aure). Sope geometry is specified by the engineer,
based on actua field conditions or on a proposed dope
design plan. Other input data usudly must be obtained
by geotechnica Ste investigation procedures.

2.1 Mapping and analysis of rock discontinuities

Geotechnical data collection methods, such as scantline
(detail-line) mapping and fracture-set mapping (Miller,
1983), provide important information on fracture orien-
tations, gpacings, lengths, and roughness. Typica map-
ping dtes in the project vicinity include natura rock out-
crops (if the project is in initid development stages) or
available rock dope cuts dong roads or accessible mine
benches.

The firg gep in andyzing such fidd daa typicaly
conggts of plotting the poles to fractures on a lower-
hemisphere stereonet in order to identify fracture sets,
which gppear as clusters of poles (Hoek and Bray
1978). The interaction of the proposed dope cut with
the orientations of these fracture sets dlow the engineer
to identify potentid dope failure modes (i.e. plane shears
and wedges, for our particular study). It should be
noted that in any rock-dope stability evauation, the gen+
erd progresson in the enginearing andyssis

1. Use fracture-set orientations to identify poten
tid dope fallure modes;

2. For the criticaly oriented sets, evauate the likeli-
hood of having sufficient fracturelengths toform
kinematicaly vidble fallure blocks; and

3. For fracture sets with sufficient lengths, estimate
the shear strength so that an engineering stabil-
ity analys's can be conducted.

In the computer smulation of rock fractures in a s,
one should gtrive to preserve the naturd spatia depend-
ence in fracture properties. Spatia covariance or semi-
variograms (Isaaks and Srivastava 1989) provide a sta-
tistica format for describing the spatial dependence in
fracture properties, which has been demonstrated by La
Pointe (1980) and Miller (1979). Thus, instead of smu-
lating fracture properties independently in space, the
measured spatid continuity can be incorporated using
methods described by Miller (1985). To conduct such
a fracture-sat amulation, each of the particular fracture
properties need to be modeled by an appropriate semi-
vaiogram modd using the “sll” (sample vaiance), the
“nugget” vaue (i.e. the semi-variogram vaue a a sepa-
ration distance of zero), and the spatid “range’ of influ-
ence. A probability digtribution modd for each fracture
property also is needed.

An essntid input for the stability caculations is the
mean length of fractures in a given set.  An exponentia
pdf (probability dengity function) is assumed for fracture
length, then the probability of a fracture being long
enough to form a viable failure path through the bench
can be obtained directly from the exponentia probability
digribution. This pdf is a one-parameter distribution,
being defined only by the mean value. See Section 3.1
below.

2.2 Shear strength

Shear strength aong rock fractures typicdly is estimated
in one of two ways. the JRC-JCS method proposed by
Baton e d (1972), and by using laboratory direct-
shear test data to describe either a linear Mohr-
Coulomb failure envelope or a power-curve modd
(Joeger 1971).

A genera power-curve mode has been adopted for
use in the NIOSH bench analysis computer programs,
given by the following expression:

t = asP+c @)

where: t = shear strength;
s = effective norma sress, and
a, b, c = mode parameters.

This equation describes a power modd with a y
intercept. It reduces to a smple linear modd when b
equas 1.0, thus making “c” equa to cohesion, and “&
equd to the coefficient of friction (i.e. tarf ).

The variability of t, given apredicted vdlueof s, dso
is needed in the bench stability anadlyss. Curently in the
NIOSH codes, the shear dtrength is modeled with a
gamma pdf with a Sandard deviation defined by a user-
specified coefficient of variaion (CV). This coefficient is
given by:

CV=g/m o §=CV(m) 2
where: s = standard deviation of t; and

m =mean of t given by Eq. ().

Therefore, asthe normal stress increases, so doesthe
shear strength and so does the standard deviation of
shear grength. Typical vaues for the shear strength CV
range from 0.15 to 0.35. Note that for small vaues of
CV (i.e less than 0.2), the gamma pdf begins to a-
proximate a norma pdf. The key advantage in usng a
gamma pdf to describe shear strength isthat this particu-
lar pdf is defined only for pogtive values, which means
that t in the computer analys's never can take on unreal-
idic negative valuesfor low vauesof s. Note that small
norma stresses are common when andyzing smdl falure
masses along bench crests.

In summary, the required geotechnical input needed
for the NIOSH bench gtability programs can be summa-
rized asfollows



Bplane.exe (2-d andysis of plane shears)

Bench height (m) and width (m)

Number of back-bresk cdls (typicdly set 0 cdls
are about 1-m wide)

Bench face angle (degrees)

Ground water height above bench toe (m)

Rock mass unit weight (tonne/cu.m): mean, sd

Fracture-st mean length (M)

Fracture-set dip (deg.): mean, sd, nugget vaue,
spatid range (no. of fractures)

Fracture-sst spacing (m): mean, nugget vaue,
spatid range (no. of fractures)

Fracture-sst waviness (deg.): mean, nugget vaue,
gpatia range (no. of fractures)

(Note wavinessisthe average dip minusthe  mini-

mum dip of afracture, and it representsa measure of

large- sca e roughness)

Shear drength (tonne/sq.m) terms. a, b, ¢, CV

Bwedge.exe (3-d anaysis of wedges)

Bench height (m) and width (m)

Number of back-bresk cdls (typicdly set so cells
are about 1-mwide)

Bench face angle and dip direction (degrees)

Ground water height above bench toe (m)

Rock mass mean unit weight (tonne/cu.m)

The following input is needed for both the left  frac-
ture set and the right fracture set that form  vigble
wedges.

Fracture-set mean length (m)
Fracture-set dip direction (deg.): mean, sd, nug- get
vaue, spatia range (no. of fractures)

Fracture-set dip (deg.): mean, sd, nugget vaue,
spatid range (no. of fractures)

Fracture-sst spacing (m):  mean, nugget vaue,
spdia range (no. of fractures)

Shear strength (tonne/sg.m) terms. @, b, ¢, CV
(s and t expressed in tonne/sg.m)

3 STOCHASTIC MODELING CONCEPTS

The probability of retaining a specified bench width for
given falure modes in a bench can be estimated by
smulaing potentia failure geometries and cataloging the
back-break postion of each one on the top of the
bench. Stahility of a given falure georretry can occur
two ways 1) the failure length is not long enough to
pass entirly through the bench, and 2) the failure length
is long enough to pass through the bench, but diding
does not occur (Miller 1983). The probability of stabil-
ity for eech geometry then is given by the sum of these
two probability vaues:

P4, = P(falure path not long enough)
+ P(failure path long enough and no diding)

Py =(1-P) +P.(1-Py) ©)

Thus, the probability of falure length and the prabability
of diding must be computed for each potentid falure
meass generated in the bench smuation.

3.1 Probability of failure length

The probability that a given smulated fracture is long
enough to pass entirely through the bench is computed
as an exceedance probability usng an eqonentia pdf
model for the fracture set lengths. The exponentia cdf
(cumulative digtribution function) is a one-parameter cdf
model given by (Devore 1995):
F(x) =0, if x<0

=1-e™ ifx>0 @)

where: m = mean.

The length required for a throughgoing falure path
for aplane-shear fracture is caculated by:

x = hsn(D) ©)

where: h = vertica height of fallure mass, as meas-
ured from the toe of thefalureto the top of the bench;
ad

D = dip of falure plane (or wedge inter-
section line for wedge failures).

Thus, the probability thet fracture length takes on a
vaue greater than x isgiven by:

PX>X)=1-PX <x)=1- F(x) =1- (1- ")
=e¥m =P, (6)
Example for mean length=1.6mand x =3m,
P(X >3)=¢e¥16=0.153=PR,

In the case of three-dimensond wedges, which dide
adong the line of intersection, the probability of length
aufficient for falure is the joint probability that the left
fracture is long enough and the right fracture is long

enough:
P (wedge) = P, (Ieft) x P (right) ™

After setting the length of the wedge intersection equd to
x in Eqg. (6), the corresponding P, (Ift) and P_(right) can
be computed using the mean length for the left fracture
set and the mean length for the right fracture set, respec-
tively.



3.2 Probability of diding

The probability of diding for a given dope falure mode
can be estimated by Monte Carlo methods gplied to a
limiting-equilibrium andys's, whereby a didribution (his-
togram) of safety factor values is generated by many re-
pested cdculations usng possble redizations of input
vadues. The probability of diding then is equd to the
fraction of safety factors that are less than 1.0. The
safety factor is defined as the ratio of ressting forces to
driving forces, and a vaue of 1.0 indicates limiting equi-
librium (i.e. the potentid failure massis just on the verge
of diding).

However, even after completing a Monte Carlo
smulation study using severd thousand iterations, the re-
aulting histogram of safety factors represents only one
possble redization of the actual safety factor pdf. A
dightly different digribution will result if the amulation is
repested usng a different random seed darting vaue.
Thus, questions dways arise regarding the number of it-
erations to use and the repestability of results.

Fourier andyds provides an dternative to Monte
Carlo smulation in esimating the probability digribution
of the safety factor, provided that the safety factor equa-
tion can be written as the sum of independent pdf’s. A
computationdly efficient way to estimate the actua pdf
of the safety factor relies on discrete Fourier methods,
which take advantage of the computing Speed of the fast
Fourier transform (Miller 1982). As presented by Feller
(1966), the sum of independent pdf's in the “space”’
domain is andogous to the product of their Fourier
trandformsin the “frequency” domain.

For our casg, if fracture shear strength is assumed to
have a gamma pdf and fracture waviness is assumed to
have an exponentid pdf (which is a gpecid form of a
gamma pdf), then the output safety factor pdf can be
described as a gamma pdf. The probability of diding
(Pg) is computed by numericdly integrating the area un-
der the discretized pdf of the safety factor to the left of
safety factor = 1.0. That is,

Ps = P(SF< 10) ®)

Additiond informeation on this andyticd method
based on Fourier convolution of pdf’s was reported by
Miller (1982).

4 BENCH STABILITY ANALYSIS

The concept of bench back-bresk cdls is illugtrated in
Figures1 and 2. For the plane-shear andlysis (Fig. 1), a
random garting point is selected near the bench toe and
then fracture locations up the bench are smulated by
generating spatialy dependent fracture spacings.  Frac-
ture dips and waviness values adso are generated using
spatial dependence and assigned to individud fractures
previoudy located on the dope face.

Back-failure
distance

Back-failure cell
117 2 | 3 | 4
72N

Figure 1. Smulated plane shears (Miller 1983).

Simulation

Figure 2. Simulated 3-d wedges (Miller 1983).

By smulaing many redizaions of a given bench,
each of which contains multiple occurrences of the pa-
ticular falure mode, the probability of stability for any
specified back-fallure cdl can be estimated as follows
(Miller 1983):

N g
Pes= [(N+ - N)/N;] +(UN:) S{ P [(1-P) s
=1 j=1

+ Pyd-Pyls} O



where: P = probability of cell stability;
N = total number of bench smulations
N = number of bench smulations that
have a least one falure path in the speci-
fied cdl;
s =thei-th bench smulaion;
J = number of falure paths in the speci-
fied cdl for the i-th bench smulation;
P,; = probability of sufficient length for
the j-th failure path;
Py = probability of diding for thej-th
falure path;

For smulating three-dimensiond wedges in a bench,
a dandard length dong the bench face must be specified
to define an area for probability accumulaions This
length typicaly is st equd to the bench height to pro-
vide for “squar€’ units that can be andyzed dong the
bench face (Fig. 2). The number and sSze of Smulation
windows depend on fracture set spacings, lengths, and
on engineering judgment (Miller 1983).

5 IMPLICATIONS FOR OVERALL SLOPES

Reaults from a bench gability smulaion sudy can be
used to help sdect interramp dope angles and overdl
dope angles. Bench geometry has a direct influence on
the overdl dope angle as expressed in the following
form:

tan(A) = 1/ [(W/H) + (LtanB)] (10)

where: A = overdl (average) dope angle
B = bench-face angle;
H = verticd height of bench; and
W = horizonta width of bench.

Example for H=15m, W = 8m, B = 64 deg.,
A = arctan{ 1/ [(8/15) + (L/tan64)] = 44 deg.

If an overdl steeper angle is desired, then the W:H ratio
of benches must be decreased or the bench faces cut at
a steeper angle. However, for typica applications, re-
aults from the stochastic bench smulations will guide the
engneer in selecting the overall dope angle to minimize
extensve loss of catch bench width and thus minimize
subsequent rockfal hazards. Reaionships between
bench geometry, catch-bench width, and overadl dope
angle can be displayed in graphs, which can be used to
predict overdl dope angles when the probability of re-
taining a given catch-width has been specified. Exam-
ples are shown in Figure 3.
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B. Plane shears; bench angle of 0.2:1 (79 deg.).
Figure 3. Examples of catch-bench stability graphs.

Failure of a tota bench width (i.e. related to the
probability of retaining a bench width of zero) will have
ggnificant effects on interramp or overdl dope gahility,
because multiple-bench failures often result when sec-
tions of benches are lost due to excessive failures of ut
derlying benches. Thus, the design of overal dope ar
gles should provide for very high probabilities (greater
than 0.95) of retaining bench widths lessthan 1 meter.

One way to interpret the probability of retaining a
given bench width is to directly relate this probability to
the percentage of bench run in a given segment of the pit
wadl thet will display that given bench width some time
after bench excavation. For example, a 0.80 probability
of retaining 4m wide catch benches can be interpreted



as expecting about 80% of the bench run (as viewed
horizontally) to have retained widths of at least 4m.

Recent experience in using these bench stability com-
puter programs has indicated that the number of bench
smulations for plane shears should be greater than 100
in most cases to provide consstent prababiligtic results
when repegting the analyss for diferent random seed
vaues. The user-interface input screen for Bplane.exe
currently ligs a default vdue of 100 smulations, with a
maximum of 200 dlowed. Due to the extensve compu-
tationd effort in the wedge smulations, Bwedge.exe cur-
rently ligts a cefault vaue of 50, with a maximum of 100
alowed.

Edtimated volumes of rockfall debris can be dated
directly to the probability of retaining given catch bench
widths. If the probability associated with a specified
back-bresk cell is calculated as P, then the average fail-
ure volume associated with P can be estimated as fol-
lows:

Firg, cdculate h, the verticd height of an average
falure

h = C,(snDsinB) / sin(B-D) (11)

where  C, = back-bresk distance to center of cdll
with probability P;
B = bench face angle; and
D = average dip of plane-shears or aver-
age plunge of wedges in the smulation.

Then, cdculate the unit-width area (i.e. the area as-
sociated with a 1-m increment dong a run of bench):

A, = 05h[C, + (WtanB)] 12)

The associated intect volume of rock prior to the failure
isthen: 'V, = A,(1m) cubic metersof rock per Imrun
of bench. A bulking factor (usudly, 0.15 to 0.25) then
is multiplied by this volume to esimate the volume of
loose rock debris lost from the bench crest and which
must be contained on the caich bench below. If this
volume exceeds the expected storage volume on the
lower bench, then the debris can be expected to cas-
cade farther down the overdl dope.

6 SUMMARY AND CONCLUSIONS

Computer software for a PC platform has been devel-
oped to stochadticaly andyze rock dope stahility, par-
ticularly amed a benches in an opentpit mine. The
analysis aso could be used for large rock dopes con
sructed for civil projects. The computer programs
smulated potentia plane-shear or wedge failure modes
and caculates to probability of retaining specified widths
on the affected catch benches. Probabilistic estimates of
potentid failure volumes aso can be obtained from this
andyss.

Such information is useful in the desgn and selection
of bench geometries and overdl dope angles s0 as to
minimize rockfdl hazards while mantaning adequate
catch-bench widths. Field studies are underway to
evauate and verify the results provided by this type of
dochagtic anadlyss. In stuations where blast damage or
highly-fractured rock will control the back-break of
benches, the analyss of dructurdly controlled failures
(plane shears and wedges) will not be adequate to de-
scribe bench gability.  Also, no dlowance has been
made in these computer codes for tension cracks that
may truncate the failure paths, so the sochastic results
may be approximate.
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