
  
  

 
 

A new method to calculate permeability of gob for air leakage 
calculations and for improvements in methane control 

C.Ö. Karacan  
National Institute of Occupational Safety and Health (NIOSH), Office of Mine Safety and Health 
Research, Pittsburgh, Pennsylvania 

ABSTRACT: The porosity and permeability of the caved zone in a longwall operation impact many ventil ation 
and methane control related issues, such as air leakage into the gob, the onset of spontaneous combustion, 
methane and air flow patterns in the gob, and the interaction of gob gas ventholes with the mining environment. 
Despite their importance, the gob is typically inaccessible for performing direct measurements of porosity and 
permeability. Thus, there has always been debate on the likely  values of porosity and permeability of the caved  
zone and how these values can be predicted. This study  demonstrates a fractal approach that allows the calculation 
of porosity and permeability from the size distribution of broken rock material in the gob, which can be 
determined from image analyses. The fractal approach presented here constructs flow equations and fractal  
crushing equations for granular materials to predict porosity for a completely fragmented porous medium. The 
virtual fragmented fractal porous medium so generated is exposed to various uniaxial stresses to simulate gob  
compaction and porosity and permeability changes during this process.  

1  Introduction  
Longwall  mining is an underground mining method that  
can maximize coal production in coal beds that contain  
few major geological discontinuities, like faults. Longwall 
coal  mining causes large scale disturbances of the 
surrounding rock mass due to fracturing and caving of the  
mine roof behind the shields as the mine face advances. 
The gob is highly fragmented since the overlying rock  
layers fall into the mine void and are broken into irregular 
shapes of various sizes. The gob can contain high void  
ratios due to fragmented rock pieces and may provide high 
permeability flow  paths for any fluid  flowing from  
surrounding formations into the mining environment.  

The porosity and permeability of the longwall gob can  
significantly affect methane and air flow patterns.  Since  
methane is a major hazard in underground coal mining  
operations, extensive methane control techniques such as 
gob gas ventholes (GGV) are employed to  supplement the 
existing mine ventilation  system. Gob  gas ventholes are 
drilled vertically into the overburden above longwall 
panels to  capture the gas released by the fractured strata  
before it enters the mining environment. Most GGVs are  
drilled to within a short distance of the mined coalbed to  
stay out of the high-permeability gob so  as not to draw  
excessive amounts of ventilation air along  with the 
hazardous methane. In addition, the flow of mine air into 
the gob may increase the risk  of  spontaneous combustion. 
It has been shown that with an increase in gob 
permeability, airflow increases in the broken, coal-rich gob 
causing the onset temperature for spontaneous combustion  
to be reached more quickly (Yuan & Smith, 2008).  

As mining progresses, the gob gradually consolidates  
sufficiently to support large loads resulting  from the 
overburden weight (Pappas & Mark, 1993). Consolidation  

results in a reduction in the void ratio (porosity) and the 
associated permeability. Although reduced to some degree 
due to compaction, prevailing high permeability pathways 
in the gob still affect the leakage of ventilation airflow  
from  the face into the gob, the flow of methane from 
surrounding sources into the gob and into the mine, and the  
performance of methane extraction GGVs. Thus, an 
understanding of compaction phenomena and the resultant  
reservoir properties of gob material is very important  for 
developing adequate methane control strategies.  

The properties of gobs and their influences on methane 
flow and control have been investigated through combined 
geomechanical and reservoir modeling (Esterhuizen &  
Karacan, 2005; Karacan et al., 2007) and through  history  
matching of GGV production. In these studies,  
geomechanical models were used to characterize the stress  
changes due to mining, which were converted to porosity  
and permeability data. Esterhuizen & Karacan (2007) 
presented the development of a new methodology to  
determine directional variations in gob  permeability based  
on a model of caving and block rotation which considered  
the effect  of block dimensions and fall height on porosity.  

This work  presents a fractal  porous medium  model to  
predict gob  porosity and permeability for controlling 
methane flow and production from GGVs and to predict 
air leakage into the gob. For this approach, the particle size 
data for simulated gob material given by  Pappas & Mark  
(1993) were used to calculate fragmentation fractal 
dimensions and particle size distributions  before and after 
controlled loading tests. Fractal geometry concepts were 
used to construct porosity and flow equations for a  
completely fra gmented porous medium through 
fragmentation, tortuosity and area fractal dimensions  
(Karacan & Halleck, 2003). The fragmented fractal porous 



 

 

 
 

 
 

 
 

 
     

 

 

 

medium  model was exposed to various uniaxial  
compressive stresses to simulate gob compaction and to  
predict porosity-permeability changes in the gob.  

2  Laboratory Tests for Gob Material Simulation 
In this paper, rock fragment size distribution data was 
taken from Pappas & Mark (1993) for model validation  
purposes. In order  to  better  understand the behaviour of the 
gob and to  provide numerical  modellers with more 
accurate data for simulating longwall mining conditions, 
they conducted a laboratory study to estimate the gradation 
of act ual gob material. 

The first phase in the laboratory tests developed test  
materials with properties similar to those of actual gob  
material. The characteristics that were considered were the  
tensile and compressive rock strengths, rock  density,  
surface roughness, rock shape, rock size, and size 
gradation. Most of these characteristics would be 
simulated by  broken rock obtained from fresh roof  falls. 
However, the rock size and gradation needed  to be reduced  
to a laboratory scale by shifting the particle size  
distribution curve of the actual gob material determined 
from pictures taken from  the headgate entries, where  
portions of the gob could be viewed. This shift  was  
performed parallel to the horizontal axis of the particle-
size curve until the desired  maximum particle size of the 
laboratory sample was reached. The detailed procedure for 
this can be found in  Pappas & Mark (1993). However,  
particle size affects the permeability of porous medium.  
Thus, the particle sizes used by Pappas & Mark (1993)  
were scaled up for use in the developed model to calculate  
permeability.  

The rock types that were obtained to simulate gob were  
shale, weak sandstone and strong sandstone. In this paper, 
the size distributions obtained with maximum particle size  
of 5.1 cm (2.0 inches) for shale were used  for modeling.  
Table 1 gives the test summary of simulated shale gob  
material.  

Table 1 Summary of simulated materials (from Pappas 
and Mark, 1993) analyzed in  this paper and their 
loading tests. 

Rock Max 
size 
cm 

Max 
stress 
MPa 

Initial 
por. 

Por. 
@ 5.4 
MPa 

Por. 
@ max. 
stress 

Shale 5.1 19.0 0.802 0.365 0.160 

 

Compressing a fragmented rock medium causes  
departures from  the initial particle size distribution  for 
both shale and sandstone material due to further crushing  
and  fragmentation of the particles. This changes porosity  
and  permeability. This will be discussed later in the rest of  
this paper. 

3	  Model Development 
3.1 	 Fractal Fragmentation and Formulation of a  

Deforming Fractal Porous Medium  

Fragmentation may be considered as structural failure of a  
brittle material caused  by multiple fractures of different  
lengths (Perfect, 1997). The disordered  nature of pores and 
grains in fragmented porous  medium suggests that the  
structure created by the fragmentation process shows  
scaling properties (Weiss, 2001). Fractal models not only 
can describe the scaling of mass and surface roughness of  
individual  fragments, but also the fragment size 
distributions (Perfect & Kay, 1995). 

The power law scaling of the number-particle size 
relation given by T urcotte  (1986):  

 N (ω > Ω) = B Ω− DF 
F (1)

where: N is the cumulative number of particles of size  
greater than a characteristic size Ω, the exponent DF is 
referred to as the fragmentation fractal dimension and  
includes the information about the scale dependence of the  
number-size distribution of particles, and BF is a 
coefficient related to  number of particles of  unit diameter.  

In this study, the porous medium forming the gob was  
assumed to have pore sizes that can be considered as 
bundles of capillary tubes of  different diameters as 
suggested by  Yu & Cheng (2002). If the diameter of a 
capillary is assumed to be η  and its tortuous length along 
the flow direction is Lt (η ), then the tortuous length will 
be longer than its representative length LO, which runs the  
shortest distance between two points. Following  
Wheatcraft & Tyler’s (1988) expression and scaling 
approach for flow in a heterogeneous medium, there is a 
fractal scaling between the diameter and length of the 
capillaries (Yu & Chang, 2002):  

 L (η) η 1 DT
t = − L DT

o (2)

In this equation,  DT is the tortuosity fractal dimension  
which can take values between 1 and 2. DT represents the 
convoluteness of  flow channels. When DT  is 1, the flow 
channels are straight. The tortuosity increases with  
increasing values of DT. In the limiting case of DT =2, we  
have a highly tortuous line that fills a plane (Wheatcraft & 
Tyler, 1988). However,  Wheatcraft & Tyler (1988)  
reported that DT values more than 1.5 do not  have any  
physical significance. 

For the bundle of  capillaries or flow channels, the 
number of channels  with size η  is also important. Since 
channels in a porous medium  are analogous to the islands 
in a sea or spots on surfaces, the cumulative size  
distribution of pores can be written  as: 

⎛η ⎞
DP 

 N (L ≥η)
 =
 ⎜ max 
⎜ ⎟⎟ (3)
⎝
 η ⎠


 



 

 

 

 

 

 

 

 

In this equation,  N is the number of pores whose sizes 
(η ) are greater than a characteristic size, L and η max is the 
maximum pore size. Equation 3 can be differentiated to  
give:  

 − dN = D η DP η −( DP +1)
P max d (η)  (4)

In Equation 4, DP is the pore area fractal dimension (1<  
DP  <2). A DP  value of 2 represents a regular pore area and 
the irregularity increases for DP <2. These equations  
describe the  scaling relationship of cumulative pore 
populations. The total number of pores from  the smallest  
diameter, η min, to the largest diameter, η max, thus can be  
obtained from the Equations  3 and 4 as:  

⎛η
 ⎞
DP

 N t (L ≥η ) = max
min ⎜ ⎟ ⎜ ⎟  (5)

⎝ η
 min ⎠

Dividing Equation 4 by Equation 5 obtains  an  
expression for the probability density function:  

dN  − = D η DP η −( DP +1)
P min d (η ) = f (η )d (η )  (6)  

N t 
where 

 f ( )η = D D
Pη P 

min η
−( DP +1 )  (7)

The equations above can be used as a  model of a  
capillary tube  bundle of any shape. 

In order to characterize a pressure-driven, steady state 
flow of a fluid through long, straight, and rigid channels  of  
any constant cross-sectional  shape, with no-slip boundary 
conditions, the Hagen-Poiseuille (H-P) flow equation can 
be used. H-P equation for a circular area:  

πΔPη c 

 Q i =  (8)
16αμLt 

where η is the hydraulic diameter and Lt  is the total  
length of the channel. In circular pipes, α=8 and the flow­
channel diameter exponent “c” of the equivalent channel  
diameter is 4. For some known shapes such as rectangle, 
the shape correction factor (α) is given by  Mortensen et al  
(2005): 

π 3γ 2 ⎛
−∞ 
 ⎛ n ⎞⎞

1 
γ
 2 πγ


 α
 =
 ⎜ 
 −
 ⎟ ⎜ ⎟  
8
 ∑ 4 5 5 tanh ⎜ ⎟ (9) 
⎝ n=1,3,5... πn π
 n ⎝
 2
 ⎠
⎠

where γ is the width-to-height (w/h) ratio  of the  
rectangular channel. Tanh(x) can be approximated to 1 if  x 
is very large which can  be satisfied if γ is very large (slit 
shaped channels for example). In this case Equation 9 
becomes; 

 

12π 5γ 2 

 α = 5   (10)  
π γ −186ζ (5) 

where ξ(5) results from truncating the summation after 5th  
iteration in Equation 9. 

In this paper, the average diameter exponent from Arya  
et al.’s work  (1981) will be used in the H-P equation 
(Equation 8) to describe flow in single channels  (3.531). 
The variable “α” (Equations 9 & 10) will be retained in the 
equation to  run parametric analyses related to channel 
shape. Thus, H-P equation from a single channel  becomes: 

 Q i ( )  π ΔP η 3.531

η =  (11)
16 Lt (η)α μ 

If the total flow rate is calculated for each channel by  
integrating between the minimum and maximum sizes over  
the entire range of pore sizes, the total flow rate is obtained 
as;

ηmax π ΔP L − DT D
Q o P

T = − ∫
Q i (η ) dN (η ) = 
ηmin 

16 μ α 2.531 + D T − DP   
⎡ 2.531+ D T −DP ⎤ 

× η 2.531+ DT 
⎛η 

max ⎢1  − ⎜ min ⎞ ⎟ ⎥ ⎜ ⎟⎢ ⎝η max ⎠ ⎥⎣ ⎦
  (12) 

For the special case of circular channels, this equation is:  

π ΔPL− DT DQ  
T  = o P ×

128 μ 3 + DT − DP

⎡ ⎛η ⎞
3+DT −DP

 (13) 
⎤

η 3+DT
max ⎢1  − ⎜ min ⎟ ⎥ ⎜ ⎟⎢ ⎝η⎣ 

max ⎠ ⎥⎦

 
Equations 12-13  honour the properties of H-P equation 

where the streamlines are formed by individual particle 
sizes that create tortuous pores of a particular dimension  
and shape and those they do not really  mix. Combining 

kA ΔP
Equations  12 and 13 with Darcy’s Law ( Q T 

T =
 ), 
μLo 


where k is the permeability and  AT is the total area to flow, 
yields  the definition of permeability for a porous  medium  
composed of tortuous channels of varying  diameters and 
shapes: 

π L1−DT
o Dk = P η 2.531+DT

16
 A α
 max
T 2.531
 +
 DT −
DP

 2.531+D T −D  (14)  ⎡
 ⎛ ⎤η
 ⎞ p 

×
 ⎢1  −
⎜ min ⎟ ⎥ ⎜ ⎟⎢ ⎝η
 ⎠ ⎥⎣ max ⎦


 

 

 

 

 



 

 

 

 

 

For circular channels;  
+ D −Dp

π L
31−D TT

o D ⎡ ⎤ 
P 3 +DT

⎛η 
k = η ⎢1 − ⎜ min ⎞ ⎥  (15) 

⎜128 AT 3 + D max ⎟   
⎟

T − DP ⎢ η max ⎠ ⎥⎣ ⎝ ⎦

In these equations, total area of  flow (AT) is the 
combination of areas for both pores and the rock surface 
exposed to the flow. Since the gob material in the caved  
zone is highly  fragmented and the total channel area is the 
same as the effective porosity where the flow occurs, total 
channel area (AP) is used for AT. In order to determine the 
value of AP, the areas of individual flow channels can be 
summed mathematically to give (Karacan, 2009): 

s πΩ2 ⎞
 A =
 A =
 ∑

⎛

⎜ i φ N 1−D
⎜

T
T p i ⎟  (1

i=1 6
 i ⎟ 6)
⎝ ⎠

as a combination of virtual pore-size fractions (Rieu & 
Sposito, 1991) for total porosity and formed by  broad 
range of pore sizes. Since the pores are assumed to be  
formed in a packing arrangement of the grains and the  
relation of ηi  (mean pore diameter in the ith virtual pore  
size fraction)  with  Ωi ,then the number of pore-size classes 
can assumed to  be equal to the number of particle size 
classes (“s” in Equation 16). Total porosity in terms of  
particle sizes is defined as:  

⎛ Ω ⎞
3−DF 

 φT = 1−
 ⎜ min ⎟ ⎜ ⎟  (17)
⎝Ωmax ⎠

where DF is the fragmentation fractal dimension that can 
be  determined from the slope of the best linear fit to the 
number-size relation given in  Equation 1.  

In the caved zone of longwall gobs, the degree of 
compaction is a function  of initial porosity and strength  of  
the rock  fragments. The initial porosity varies with the  
shape of rock fragments, their sizes and size distribution 
(Yavuz, 2004). He notes that the initial compaction  of  
caved material will be larger during the initial loading  
(compression) stage. As compression increases, the broken 
material will stiffen  due to  the densely compacted material  
and a reduction in porosity in the caved zone will result by  
further crushing or fragmentation of the initial rock  pieces. 
Crushing is accompanied by changes in particle size 
distribution. The crushing strength of a particle is a 
function of its size and its co-ordination  number (number 
of contacts with neighbours). In the case of a large  
population of granular materials subjected to the above  
processes, the change in compaction is important for 
evaluating porosity. 

Using the principles of grain crushing and a particle-
size distribution modeled as a self-similar pattern, the 
plastic reduction in porosity with a one-dimensional 
applied stress increment is given by (McDowell  et al., 
1996):  

(1−DF ) 
2 εdφ T = −βf (2
 − D
 )
 

(1−κ )σΩ
 F 

 max  (18)  
m(1−DF ) m( DF −1) −1

× m σ 2 σ
 2
0 dσ

In this equation  DF is the fragmentation fractal 
dimension defined by Equation 1, ε is the surface energy in 
linear-elastic fracture mechanics (Griffith, 1920), m is the 
Weibull modulus based on  the observations that particle-
survival probability follows a Weibull distribution, σ 0 is
the tensile strength of the grains, σ  is the applied 
macroscopic stress and f is fracturing  probability term  
(McDowell et al., 1996). This equation can  be written in a 
more compact form by separating it into the plastic 
compressibility index  (Λ) and stress increment ( dσ ) 
terms:  

m(DF −1)
−2

 dφ T = −Λσ 2 dσ  (19)

where Λ is  defined as:  
(1− DF ) 

2 ε m (1− DF )

Λ = βf (2 − D )mσ 2  (20)  
(1 − κ )σΩ F 0 

max

Equation 19 can be integrated, assuming Λ is constant  
at each stress level, between two successive stress  
increments (i to i+1) to  obtain (Karacan, 2009):  

⎡
 m( D (D −1)
−1 ⎤
σ
 

F −1) m
2 i +1 σ


F −1

φ ⎢ 2i ⎥
Ti +1

−
 φ
Ti 
= −Λ
 m( 1) −
 m(D −1)  (21)  

⎢
 DF − −1 F −1 ⎥

⎣
 2 2 ⎦


In order to solve Equations 19-21, the plastic  
compressibility index  (Λ) should be defined  by  either  
substituting typical values of physical parameters in 
Equation 20  or by  using a typical value of 0.1 for sands  
and clays (McDowell et al., 1996). 

3.2  How to  Determine Model Parameters  

In effect, Equations 19-21 evaluate the change in  porosity  
as a function of increasing vertical stress and 
fragmentation fractal dimension. In each iteration, or  
incremental vertical stress, the new porosity replaces the 
porosity term (Ø) in Equation 16 to modify total flow area 
(AT). Finally, the updated flow area is inserted into  
Equation 14, for rectangular channel openings or  
Equation 15  for cylindrical channels, to estimate the 
permeability at a particular stress and fragmentation level  
(Karacan, 2009). 

The general solution procedure stated above requires  
determination  of these parameters: representative length 
“Lo”, maximum and minimum particle dimensions “Ωmin  
and Ωmax” in the range(s) that shows fractal behaviour, 
Weibull modulus “m”, pore, tortuosity and fragmentation  
fractal dimensions  “DP, DT and DF” respectively, virtual 

 

 

 



 

 

 

 

   

   

   
   

 

   

   

    
   

pore size classes “s”, minimum and maximum pore 
(channel) diameters “ηmin and ηmax”. 

Weibull modulus (m) is a measure of the variability in  
strength of the material. For chalk, brick, stone and  
cement, m is  between 1 and 5 (McDowell  et al., 1996). 
Engineering ceramics, for instance, have values for m of 
about 10 due to much less variation in strength compared  
to natural rocks or compared to composite materials with  
relatively high inter- and intra-particle porosities and 
flaws. Thus, a low m-value around 2 should be expected  
for natural materials. 

Representative length  (Lo) is defined as the shortest  
distance between two points where there is a pressure  
differential that drives the flow. These two points may be 
on either side of the measurement interval within the gob 
or  from a point in the gob to the gateroads. Therefore, the 
representative lengths change based on the location of the  
evaluation  points in the gob. 

Fragmentation fractal dimension (DF) defined by
Turcotte (1986) showed that particle sizes of  geologic 
materials exhibit fractal behaviour as shown in Equation 1.  
The cumulative number versus  particle size relation
(Figure 1) that is used to  determine DF can also be used to  
find the maximum and minimum particle  size. Maximum  
and minimum particle diameters (Ωmin and Ωmax) are 
approximately  the cut-off limits of deviation from linearity  
in the number-size relation. 

 
 

  

 

1.E+00 

1.E+01 

1.E+02 

1.E+03 

1.E+04 

1.E+05 

0.1  1
Particle Size (cm) 

N
 (>

O
m

eg
a)

 

After Compaction 
Before Compaction 

Figure 1	 Log-log plots for number-particle size data 
(Equation 1) for shale test before and after 
loading. DF’s for this test - before compaction 
and after compaction are 2.19 and 2.89, 
respectively. 

The fragmentation fractal  
dimensions and maximum  and minimum particle sizes 
before and after loading tests are listed in Table 2. 
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Table 2 Results of DF, DT, DP and maximum (Ωmax) and  
minimum (Ωmin) particle sizes (up-scaled) 
determined before and after loading tests using 
number-size relationship  

Before Loading 
s DF Ωmin 

(cm) 
Ωmax 
(cm) 

9 2.19 15 51 
Before Loading 

DT 

(straight) 

DT 

(tortuous) 

DP 

(uniform) 

DP 

(irregular) 
1 1.10 2 1.19 

After Loading 
s DF Ωmin 

(cm) 
Ωmax 
(cm) 

10 2.89 5 51 
After Loading 

DT 

(straight) 

DT 

(tortuous) 

DP 

(uniform) 

DP 

(irregular) 
1 1.26 2 1.89 

The number of virtual pore size classes “s”  is equal to 
the number of different particle size fractions that are 
within the cut-off limits of the data set where fractal 
scaling is observed. Since a linear trend is observed 
between all particle size classes, the number of  particle 
size classes used will be the same as the virtual pore size 
fractions (Table 2). 

Fractal dimension of the one-dimensional trace of pore  
channel (DT), or tortuosity fractal dimension,  describes 
how the pores are convoluted in relation to Lo. However, it  

is not always easy to determine the tortuosity of a channel 
to find its fractal dimension. In this study, the “slit-island”  
theorem of Mandelbrot  et al. (1994) was used  to determine 
DT, since there is really no practical means of measuring 
this parameter. This approach has been used in the 
literature (Sammis & Steacy, 1995) to estimate the fractal 
dimension of lower order geometries. 

In  order to apply the slit-island theorem to estimate the 
tortuosity fractal dimension (DT) in the crushed material,  
the fractal increment values reported by various 
researchers on  different type of soil and porous rocks were  
evaluated. Jacquin & Adler (1988)  observed  fractal  
increments of 0.23 in pore structures of dolomitic 
limestone. Tyler & Wheatcraft (1989) reported fractal 
increments between 0.14 and 0.43, with an average of 0.23  
when obtained from soil particle size data. Karacan & 
Halleck (2003) determined that an average DT increment 
of 0.29 for incompletely fragmented porous media using  
shock waves. These increments can be used to calculate DT  
values of  1.23 and 1.29 from  these references for highly  
compacted and incompletely fragmented porous media, 
respectively. The average of these two  values (1.26) will 
be taken as the representative value for the compacted gob. 
For the initial gob material, 1.10  will be used as the 
average of DT. This value is based on the averages  
calculated by Wheatcraft & Tyler (1988) as 1.08 using 
Monte-Carlo simulations, values reported by Yu & Cheng 
(2002), and Yu  & Liu (2004) for pores in 52%  porosity  
medium between 1.10-1.12. These values have physical 
sense since compaction or incomplete fragmentation  
compared to complete fragmentation increases the 
tortuosity of pore channels. 

If the pore area represents a smooth object (circle, 
square, triangle etc.) covering the whole area, then DP can 
be taken as  2. If the pores are irregular in shape and 
distribution, then their area-fractal dimension will be less 
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than  2  (Ahmed & Dryzmala, 2005). In case of irregular 
pore shapes and  distributions, slit-island theorem can be  
used by  employing the DF values (Table 2) obtained in  this 
study. Since particle size distribution is a 3-dimensional  
entity (Tyler & Wheatcraft, 1989), its Euclidean  dimension  
is 3. Then, the calculated increments (DF-3) are added to  
the Euclidean dimension for area to obtain  DP (Table 2). 

Tortuosity (DT) and pore-area (DP) fractal dimensions  
for straight and regular pores as well as the values 
determined using the above approaches for the convoluted  
and irregular pores are given in Table 2. These values will 
be  used in model calculations  later in this paper. 

In  order to calculate porosity and  permeability using 
actual gob-material sizes and their distributions, the 
gradation curves of laboratory-simulated gob material  
were  up-scaled by 10 times to their original sizes. Up-
scaling, in effect, changes particle sizes and eventually the  
channel sizes that will be calculated  based  on particle size. 
However, as long as the gradation curve is held constant,  
up-scaling  does not change the fragmentation fractal 
dimensions since this will not change the slope. Thus, the 
fractal dimensions reported in Table 2  will still be valid. 

The size of the grains in a fragmented porous media  
will directly affect the pore flow area and  pore diameters 
forming between the grains. In order to calculate 
permeability under increasing loading, up-scaled grain 
sizes will be used in area- and  pore-size calculations. In  
order to incorporate the effect of loading  on permeability,  
a fractal crushing model for porosity will be integrated into  
calculations. 

Equation  16 is used to calculate the total flow area in 
the fragmented gob material. This equation can  
alternatively be represented with an integral:  

π Ω max 

 ∫Ω φ N 1−DT dΩ  (22)
3 Ω min 

In this integral, maximum and minimum particle sizes  
are the up-scaled values and the number (N) is a function 
of  grain size. In order  to find  this  function, the numbers of  
up-scaled particles for each up-scaled size were plotted 
(Figure 2). 
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Figure 2 Number-size distributions for the up-scaled 
diameters for the initial gob material. 

By up-scaling the material  mass (assuming  
density stays constant) by 1000 times due to a 10 fold  
increase in  particle diameter, the functional relationship  
given in Equation 23. Figure 2 shows that as diameters 
increase, the number of particles decreases, as expected. 
More importantly, the figure shows that the data can  be 
successfully represented by power functions. 

In Equation 16, Ø-values are the partial porosities for 
each infinitesimal size interval. Integration between Ωmin  
and Ωmax will result in the total fractal porosity (ØT), which 
will not be dependent on Ω. With these treatments, the 
fractal flow area (Equation 16) becomes: 

π
 Ω max

 φ
T ∫
 (10326Ω
1−−1 ) D.74 T Ω dΩ  (23)

3
 Ωmin 

After rearrangement, the integral shown below is obtained:  

10326 1−D ΩT π
 φT ∫

max

Ω −0.74+1.74DT dΩ  (24)  
3 Ωmin 

Solving the integral gives the fractal pore area for 
initial gob material as: 

⎡ Ω 0.26+1.74DT ⎤ max − 
10326 1−D ⎢ ⎥

T π
 ⎢1.74D 0.26
 T + ⎥AT = AP = φ
  

T (25)  
3 ⎢ 0.26+1.74DT ⎥Ω⎢ min ⎥

⎣⎢1.74DT + 0.26 ⎦⎥

This equation  can directly be used in Equations 14  or  
15 for “area“once the fractal bounds of particle sizes and 
the size of the flow channels are determined. In Equation 
25, ØT is the porosity which changes as uniaxial stress 
progressively increases according to Equations 19-21 
(Karacan, 2009). 

 

In order to  determine maximum and minimum channel  
sizes, Equation 26  given below is  used.  

⎛
1/ 2

 2

 η
 = 1 DT

i i ⎜ φi N − ⎞Ω i ⎟  (26)
⎝ 3
 ⎠


This equation gives the sizes of flow channels in each 
partial volume of a fractal porous medium. In this  
equation, the number term (N) is replaced  by its functional 
form given in the integrand in parenthesis of Equation 23.  
The partial porosity term in  the equation is, on the other 
hand, the amount  of porosity in that partial volume (Rieu 
& Sposito, 1991). In  order to obtain  partial porosity, the 
total porosity at a particular loading stage can  be  divided 
by the  “virtual pore size fractions” or the number of 
particle size classes “s” given in Table 2. This value was 
around 9-10 in this study as tabulated in Table 2. With  
these additions, the maximum and minimum channel  
diameters (ηmax and ηmin) as a function of Ω can be  
calculated. These relations are given in Table 3.  

 

 



 

 

  

 

  

 

Table 3  Minimum and maximum sizes (ηmin and ηmax) of 
tortuous flow channels as a function of particle 
size. Particle diameters to be used are the up-
scaled values. The units of  both particle sizes and  
the resulting channel sizes are in cm.  

ηmax 

0.82 T 

s 
φ ( ) TT DD 0.26 1.74 

max102361 +− Ω 

ηmin 

0.82 T 

s 
φ ( ) TT DD 0.26 1.74 

min102361 +− Ω 

4  Model Application to Predict Gob Porosity and 
Permeability under Loading 

4.1  Porosity of Initial and Compacted Gob Material 

In  order to compare the initial porosities given by the 
experiment at 0.0 MPa load (Table 1)  with the initial 
porosities calculated  using particle size distribution and 
fractal model  equations, Equation 17 was used first. This  
equation requires the upper and lower bounds (in terms of  
particle size) of distribution  across which a fractal scaling 
is observed and the calculated fragmentation fractal 
dimension. Since the size distributions given in Figure 1 
reveal reasonably good linear relations for the initial gob 
material, the upper- and lower-size limits were selected to  
capture the whole particle-size range in each test (Table 2). 
In addition, the DF’s given in Table 2 were used for the  
same cases. 

The porosity values obtained using Equation 17 and the  
values determined in the laboratory  before loading are 0.63  
and 0.8, respectively. Before calculating the porosities 
using particle size distributions and the theory described in  
previous sections, porosities that should be  experienced in 
the gob were calculated using the experimental stress-
strain curve (Pappas & Mark, 1993) and the initial porosity  

determined from Equation 17 (0.63). The results of this  
calculation are shown in Figure 3.  
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Figure 3	 Porosity predicted for compacting gob materials 
using Equations 17-21. 

The porosity evaluation during uniaxial compression of  
simulated gob material shows that at earlier loadings, the 
material could be compressed more when compared to 
later stages. At around a stress level of 19 MPa (2750 psi), 
the predicted  final porosity of the material was about 20­
22%. A difference of 4-5% between the values given in  
Figure 3 and the values in Table 1 can be considered close 
for this analysis. As an inner check  point, the porosity  
values reported in Table for 5.4 MPa (800 psi)  were  
compared  with the corresponding  data shown in Figure  3.  
These values are also within  2-3% of each other. 

As the longwall face advances during mining and the  
overburden starts settling on the caved material, the 
initially caved gob material is subjected to progressively 
increasing stresses. These stresses decrease the initially  
observed high  porosities by crushing the gob material into  
smaller pieces as shown in the previous sections  
(Figure 3).  

The porosity of simulated gob material after laboratory  
loading test was calculated by using the particle size 
distributions data after the test (Figure 1) and the fractal  
model given in Equation 17. In summary, a similar 
procedure that was followed to calculate initial porosities 
was applied.  The porosities were calculated using the 
fragmentation fractal dimensions given in Table 2 within  
the linear range of particle size data (Figure 1) where 
fractal behaviour is observed. For these calculations, the 
lower bound of the particle diameter after loading  was 
determined as 5 cm (for up-scaled diameters). In this  
calculation, a porosity value of 0.23  was predicted, 
compared to  0.16 that was obtained during laboratory tests. 
Again, this difference between predictions  and  
reported/calculated values can be regarded as acceptable 
predictions for  practical purposes.  

The porosity calculated using fractal methods and the 
number-size relations discussed so far and their  
comparison with  laboratory measured or calculated data  
shows that the gob material forms a fractal porous  
medium. The porosity of this medium, before or after  
being subjected to a vertical stress, can be calculated 
within an acceptable error using number-size distribution 
data available for the fragmented gob material. The 
evolution of the porosity during the entire loading period  
can also  be estimated by using Equations  17-21, as  
presented in  Figure 3. This suggests that the fractal 
crushing equation can be used to  predict evolving  
porosities in a gob as a result of compression. One can  use 
the initial number-size distribution  of a granular media and 
its fragmentation  fractal dimension to calculate changing 
porosities as stress is progressively increased. 

4.2 	 Calculation  of  Permeability of Initial and  
Compacted Gob Material 

In  order to calculate gob permeability, Equations  14 or 15  
can be used depending on the expected shape of the flow 
channels. Certainly, this is a hard judgment to  make for a 



 

 

 
 

 

 
 

complex fragmented medium. However,  in any case, in  
this study the channels were taken as rectangular shaped  
pores, channels, and even as slit-like rectangular 
geometries. Mathematically, this transition in the shape  
can be created by changing the aspect ratio (Equations 9­
10) between the two-axes of the rectangular geometry for 
use in the H-P type flow and  permeability prediction.  

In  order to calculate permeability of a gob composed of 
broken rocks and rectangular flow  channels, Equation 14  
was used. In this equation, total pore area for flow was 
calculated using Equation 25 and the flow channel sizes 
were taken as in Table 3. As it can be noticed, the flow 
area is a function of particle size and tortuosity and area  
fractal dimensions (DT and DP). Flow channel sizes are 
also a function of DT. In the permeability calculations, the 
DT=1.26 was used as tortuosity of the rectangular 
channels, whose areas were irregular (DP=1.19). The  up-
scaled maximum and minimum rock sizes (Ωmax and Ωmin) 
for initial gob  material were based  on Table 2.  

Table 4 shows the aspect ratios used for the rectangular 
channels and the calculated shape factors (Equation 9).

Table 4 Aspect ratios used and the calculated shape 
factors for rectangular flow channels. 

Aspect 
Ratio 

Shape Factor 

10 149.32 
20 266.13 

100 1224.04 
250 3023.75 
750 9023.63 
5000 60023.57 

 As 
this table indicates as the aspect ratio increases, i.e. as the  
rectangular opening becomes  more of a slit-like structure, 
the shape factor increases. Also, since shape factor (α) is in  
the denominator of Equation 14, the value of permeability 
is expected to decrease. This is a situation that is expected 
in reality too. 

Figures 4 and 5 show the predicted permeability of  
rectangular channels of various aspect ratios in gob as a  
function of uniaxial compressive load.
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Figure 4 Calculated permeability change for a shale-rich 
gob, where porous space for gas migration is 
formed with irregular rectangular channels of 
geometrical aspect ratios of 10:1, 20:1, 100:1. 
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Figure 5 Calculated permeability change for a shale-rich 
gob, where porous space for gas migration is 
formed with irregular rectangular channels of 
geometrical aspect ratios of 250:1, 750:1, 
5000:1. 

 Both figures show  
that the permeability is higher initially and decreases as a 
result of crushing and compaction during loading. The  
predicted permeabilities are changing from 0.00011 cm2  
(11×103 Darcy) for a gob initially composed of  bigger 
rocks forming irregular, meandering tortuous channels of  
rectangular shape and 10:1 aspect ratio to 0.00004 cm2  
(4×103 Darcy) for the same gob under compressional 
loading.  When the initial aspect ratio is 20:1, the initial 
permeability is around  0.00006 cm2 (6×103 Darcy), which 
decreases to 0.000025 cm2 (2.5×103 Darcy) w hen the gob 
is compressed (Figure 4). As it can be seen from Figures 4  
& 5, as the aspect ratio increases the initial and final 
permeabilities decrease for each of the six  cases modeled  
for this paper.  

The obvious question, of course, is  how these  
permeabilities compare with the measurements.
Unfortunately, there are not  any field measurements of  

 

 

permeability of gobs due  to their inaccessibility for 
performing direct measurements. However, there are some  
reported values calculated based on volumetric strains and 
geomechanical calculations. For instance, Brunner (1985)  
used gob permeability values in ventilation network 
models as 1×10-7 m2 to 1×10-5 m2 (1×105 to 1 ×107 Darcy).  
Ren  et al. (1997) estimated the permeability in the gob to  
be on  the order of 1×10-10  m2 (1×102 Darcy) in the   
compacted region. Wendt  & Balusu (2002) used  maximum  
values around 1×10-9  m2 (1×103 Darcy). Whittles et al. 
(2006) reported calculated values in the range of 5×10-7 m2  
(5×105 Darcy) to 1×10-8  m2 (1×104  Darcy) for a gob.  
Esterhuizen & Karacan (2007) reported calculated values  
of 1×10-9  m2 (1×103 Darcy). The differences in reported  
permeabilities  may be related to different coal-seam 
geologies, different  panel layouts and to  differences in  
caving characteristics. Nevertheless, it should be noted that  
all these reported  values are within similar orders of 
magnitude and close to the permeability values calculated 
by the fractal flow models presented in this study. Thus, 
the fractal-fragmentation and fractal-crushing driven  
methodologies and the flow  models presented in these  



 

 

analyses can predict permeabilities close to the values 
reported in other studies.  

5  Summary and Conclusions  
This study developed a predictive approach using the  
principles of scaling and fractal porous medium combined 
with fluid flow. The fractal approach constructed flow  
equations and fractal crushing equations for granular  
materials to predict porosity and  permeability for a 
completely fragmented porous medium. The virtual  
fragmented fractal porous medium so generated was  
exposed to various uniaxial stresses to simulate gob 
compaction and  porosity and permeability changes during 
this process for various flow channel complexities and 
irregularities. 

Particle size distributions  of gob material determined  
from digital pictures or from  simulated tests can be used to  
find the fragmentation fractal dimension of gob material 
based on a number-size relationship, which then can be  
used to  find porosity. Fluid flow in a fractal porous media,  
on the other hand, can be described using fractal scaling  
between pore and grain sizes. These information can be  
used in the Hagen-Poiseuille (H-P) equation to  describe  
flow rate, which then can be integrated with the Darcy 
equation to describe permeability of a fractal porous media 
in terms of textural and  fractal properties. Moreover, 
fractal  crushing of granular materials can be used in the  
definition of  flow area to simulate compaction  of a gob. In  
this study, the porosities predicted using a fractal crushing  
model were found to b e in g ood agreement with the  
porosity values calculated using stress-strain data and  
particle size data. 

Geometrically, circular and smooth channels should 
give the highest permeability. This study was conducted  on 
rectangular-shaped geometries as a more realistic approach  
to channel shapes in the gob. Based on this approach, it 
was shown that as the irregularity and aspect ratio of the 
channels increase, permeabilities decrease as expected. 

This paper demonstrated a new approach to calculate  
porosity and permeability of gob. Using  the approach  
developed in this paper, it is possible to make predictions  
of  gob porosity and permeability. This will lead to  
predictions regarding the flow amount and flow patterns in  
the gob. The ability of improving predictions in the flow 
amounts and flow patterns in the gob using this simple  
technique will lead to performing leakage calculations and  
methane control projections. However, one should exercise  
caution in treating the data from either digital images or 
from particle size experiments as the technique is closely  
related to geometrical and scaling parameters. Therefore,  
results can  be sensitive to errors in  data analyses, which  
can lead to spurious  porosity and permeability values. 

Nomenclature 
AG   area of grains  
AP   area of pores  
AT   total area 

DF   fragmentation fractal  dimension  
DP   pore area fractal dimension 
DT   tortousity fractal dimension 
f   fracturing  probability term  

h  thickness of the analysis location 
k permeability  
Lt   tortuous length 
Lo   representative length 
s  number of virtual pore size fractions  
Ni   number of particles in the ith size class 
ΔP differential pressure  
m Weibull  modulus  
Q  total flow rate 
V   volume of porous medium  

Symbols  
α   shape factor in H-P equation 
η  pore diameter  
ηi   pore diameter of the ith size class 
φ   porosity of fragmented porous medium  
φi  porosity in partial volume in  fractal  

porous media 
φT   total porosity 
μ   viscosity  
Ωi   particle diameter of the ith size class 
Ω   average particle  diameter  
Π   hydraulic resistance  
Ψ   arbitrary cross sectional area  
Λ   plastic compressibility index 
v(x, y)   fluid velocity perpendicular to x-y plane 
ε  surface energy in linear-elastic fracture  

mechanics  
σ 0   tensile strength of the grains  
σ   applied  macroscopic stress  

Permeability conversion factor  

 1 Darcy  10-12 m2 = 10-8 cm2  
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