
1 INTRODUCTION  

The discrimination of mine fires from nuisance 
signatures such as emissions from diesel equipment, 
flame cutting and welding operations, and battery 
charging operations is an ongoing problem for early 
and reliable mine fire detection.  Currently most in-
mine fire detection systems use thermal or CO sen-
sors.  Thermal sensors are useful in the proximity of 
flaming combustion.  CO sensors are subject to false 
signals from CO diesel equipment nuisance emis-
sions and H2 cross-interference from battery charg-
ing operations.  Multiple type fire sensors and statis-
tical methods, including neural network, have been 
used for mine fire detection and the elimination of 
nuisance emissions in non-mining applications (Ishii 
et al., 1994, JiJi et al., 2003).  As discussed previ-
ously (Edwards et al , 2002, Friel and Edwards, 
2002), a set of three sensors and a neural network 
was determined to predict the occurrence of a mine 
fire in the presence of diesel emissions.  These sen-
sors were: a carbon monoxide sensor; an optical path 
smoke sensor; and a MOS sensor with bimodal re-
sponse to products-of-combustion (POC) from mine 
fires and NOx from diesel equipment.  These evalua-
tions were based upon coal and conveyor belt com-
bustion experiments in the presence of diesel emis-
sions.  Subsequent to that research, additional 
experiments included wood combustion.  A new 
neural network (NN) was constructed based upon an 
optimum choice of sensors.  These included the pre-

vious three sensors and a second MOS sensor.  The 
new NN uses directly the CO sensor, optical smoke 
sensor, and bimodal MOS sensor output, the product 
of the CO sensor and optical smoke sensor outputs, 
and the product of the outputs from the bimodal 
MOS sensor, labeled 2105, and a MOS sensor, la-
beled 2600, which is more responsive to H2 than 
CO.  The utility of the program can only be success-
ful for underground mining applications if predic-
tions can be made accessible to the mine personnel 
in real-time.  This required the implementation of a 
real-time sensor data interpretation program for the 
NN executable file.  The objective of this research 
was to demonstrate how this could be accomplished. 

2 SENSOR TYPES 

For mine fire detection the available sensor types 
include gas, smoke, and thermal sensors.  Although 
thermal sensors are widely used, their range is lim-
ited to the immediate proximity to a fire in its flam-
ing combustion stage.  A sensor commonly deployed 
when belt entry air is used at the mine working face 
is a CO sensor.  An advantage of a CO sensor is its 
capability to quantify a fire in terms of the molecular 
concentration of a product gas species.  A CO sensor 
is especially useful for early detection of a deep 
seated spontaneous coal heating where smoke con-
centrations are low.  Disadvantages are its response 
to emissions from diesel equipment, flame cutting, 
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welding, and its susceptibility to interfering gases, 
such as H2 from battery charging operations.  Smoke 
sensors, which are either optical or ionization, are 
responsive, stable, and easy to check.  The ioniza-
tion smoke sensors are usually based upon the decay 
of an alpha emitter such as Am241 or a beta emitter 
such as Kr85.  A disadvantage of an ionization smoke 
sensor is the requirement for a license for the radio-
active source dependent upon the strength of the 
source.  Optical smoke sensors can be either a point 
or a path type.  The point type sensor is based upon 
optical scattering, and the path type is based upon 
optical obscuration.  An advantage of the path sen-
sor is its ability to probe the cross section of an en-
try.  A disadvantage for a path optical smoke sensor 
is the optical path distance which can create a prob-
lem for its installation in a mine.  Nuisance emis-
sions which can affect smoke sensors include dust, 
water vapor, and particulate emissions from diesel 
equipment and flame cutting, and for the case of an 
optical path sensor the potential blockage by per-
sonnel and equipment.  Optical smoke sensors, 
which are generally in the infrared optical range, are 
very responsive to larger smoke particulates pro-
duced by smoldering combustion, and ionization 
smoke sensors are generally more responsive to 
smaller smoke particulates produced by flaming 
combustion.  The demarcation size is about 0.3 mi-
crometer.  Because of the optical sensor’s response 
to larger particulates, it will be less responsive to 
smaller diesel particulate emissions. 

  Another class of sensors which respond to mine 
fire gases are MOS sensors.  These sensors are very 
responsive, but not very selective in their response.  
Their responsiveness can be ordered in terms of their 
resistance change to various oxidizing and reducing 
gases.  Methods to vary their selectivity include the 
addition of a catalyst, sensor element grain size se-
lection, heating of the sensor, and filters.  Another 
advantage of the MOS sensor is its compact size.  Its 
cylindrical structure has a height and diameter of 
about 1.3 cm.  A disadvantage of a MOS sensor is 
the high temperature, 250 to 380 º C, of the sensing 
element.  A MOS sensor which is sensitive to NOx 
has an increase in its electrical resistance associated 
with adsorption of oxygen due to electron transfer 
from the surface element to the oxygen and the 
buildup of a positive space charge on the element 
surface.  The presence of deoxidizing POC gases 
will remove the adsorbed oxygen and result in re-
duced resistance.  To be useful, the MOS’s sensitiv-
ity to NOx must be sufficient to overcome its sensi-
tivity to CO in diesel emissions, otherwise the 
discriminating capability of the sensor will be com-
promised.  Generally there are gas concentration 

ranges over which the sensor’s resistance element 
will respond with a power dependence upon the ad-
sorbed target gas concentration.  For an extended 
range of concentrations this nonlinear logarithmic 
dependence makes the prediction of the net effect 
problematic, and direct experimental verification is 
required. 

In a refueling area where rapid flaming combus-
tion most likely will occur, optical spectral emission 
sensors could be useful.  In this case the distance be-
tween the source fire and sensor will be relatively 
short, and infrared signal attenuation by smoke will 
initially be minimal.   

The ordinary use of fire sensors depends upon de-
fined alarm values.  Fire sensors for in-mine use 
have established alarm values (Code of Federal 
Regulations, 2001). These include a CO alert value 
of 5 ppm above ambient, a CO alarm value of 10 
ppm above ambient, a smoke optical density of 
0.022 m-1, and a temperature of 165 ° F. 

3 MINE FIRE DETECTION METHODS 

There are three approaches for utilization of sen-
sors for mine fire detection in the presence of nui-
sance emissions.  One approach is to increase the 
sensor alarm and alert values to compensate for nui-
sance emissions.  Without an exact knowledge of the 
nuisance emissions’ gaseous and particulate concen-
trations, which will be variable in response to the 
operation of the emissions producing equipment un-
der variable power loads, early and reliable fire de-
tection will be compromised.  For example, this ap-
proach would be expected to miss early smoldering 
stages of a mine fire.  A second approach is rule 
making.  This approach would rely upon an under-
standing of the generation of emissions from nui-
sance producing sources and combustion sources.  
For example, this approach could examine rates of 
change in a measurable emission, such as CO, so as 
to differentiate CO emissions from a diesel and from 
a mine combustible. However, the rate of change of 
a fluctuating time variable quantity will fluctuate 
considerably and can produce indistinguishable 
events.  Another example is to rely upon the meas-
ured historical relationship between two emission 
components, such as NO and CO from a diesel en-
gine.  This approach can depend upon the growth 
rate of the fire (Edwards et al., 1999).  A third ap-
proach is information processing.  This approach is 
useful when multiple type sensors with nonlinear re-
sponses to various POC are used.  In this approach a 
relationship between the classification of an event 
and the sensors’ inputs can be established with a 



method which recognizes patterns for known data 
sets.  An advantage is that a number of mine fire-
nuisance emission experiments can be conducted to 
establish the functional relationships.  One such in-
formation processing approach is a NN approach.  
Based upon these relationships classifications of un-
known events similar to those for which the relation-
ships are developed can be made.  These classifica-
tions can be quantified with a probabilistic 
interpretation.     

4 NN PROGRAM 

A NN program named NeuroSolutions developed 
by NeuroDimension, Inc1 was applied to fire predic-
tion. The trained perceptron NN which was imple-
mented was composed of thirty eight processing 
elements that produced three output classifications 
in response to five inputs.  The NN program had 
two-hidden-layers with 20 processing elements (PE) 
in the first layer and 10 PE in the second layer.  A 
hyperbolic tangent function was used as the activa-
tion function which operated on the linear combina-
tion of inputs to the PEs in the hidden layers.  The 
output classification is a result of the application of a 
softmax function to the inputs to the PEs in the out-
put layer. The softmax function is a probability 
function based upon exponential weights.  Applica-
tions of the NN method require the determination of 
the internal weights between the input layer of sen-
sor data and the first hidden layer, between the se-
quential hidden layers, and between the last hidden 
layer and the output layer.  A backpropagation 
method for the errors associated with the feedfor-
ward of the input training is used to determine the 
weights for the PEs during the training stage.  The 
testing stage or predicting stage uses a forward 
propagation method. The five inputs consisted par-
tially of the responses of the CO sensor, the optical 
path smoke sensor, and the bimodal MOS sensor, all 
normalized by their ambient values.  In addition two 
product functions of sensors were included.  These 
were the product of the responses of the CO and op-
tical smoke sensor, and the product of the bimodal 
MOS sensor and a MOS sensor responsive to H2 and 
CO.  A trained NN executable file was constructed 
by iterating on the training data set with known out-
put classifications.  Based upon a training data set 
which consists of six in-mine combustion experi-
ments in the presence and absence of diesel emis-
sions, an optimum set of sensor type inputs was 
1 Mention of any company or product does not con-
stitute endorsement by NIOSH. 

determined which would detect the test fires and 
yield the minimum number of false alarms.  The 
combustion fuel sources were coal, conveyor belt, 
and wood. 

5 DATA EVALUATION 

Each sensor’s analog output voltage is converted 
into a digital signal by an accessor card for process-
ing by the mine monitoring system.  The range of 
the analog signal is subdivided into 255 subdivisions 
associated with the 8 bits of electronic information 
available for data representation.  The subdivision 
represents the minimal signal variation that can be 
processed.  For example, if the sensor’s output sig-
nal range is 0 to 5 volts, then the minimum signal 
change which can be processed is 19.6 mV.  As part 
of the mine monitoring system, an applications 
computer program was prepared which managed the 
real-time sensor data for inclusion into the NN ex-
ecutable file.  To process the input data for the NN, 
the background average is computed for each sen-
sor’s response based upon a specified time incre-
ment.  This time was generally selected to be about 
5 minutes prior to start of the experiment.  After the 
average values were determined for the sensors, the 
program proceeded to normalize the subsequent in-
put by the average values.  For all sensors exclusive 
of the CO sensor, this data normalization was ac-
complished by a division of the sensor output by the 
sensor’s average ambient value.  For the CO sensor, 
the ambient value was subtracted.  The normalized 
values were found to yield more consistent input 
data for the NN than the actual signal values, since 
changes relative to ambient are important for charac-
terization of the event.  The program also developed 
the appropriate multiplicative combinations from the 
sensor data as inputs for the NN.  The NN output 
was displayed on a monitor as columns of probabil-
ity values for clear air, diesel emissions, and fire 
POC.  When a fire was identified the monitor dis-
played a box with a fire alert message.  This system 
was successfully evaluated not only with previously 
acquired data, but also in real-time while a mine fire 
detection experiment was in progress. 

6 EXPERIMENTAL METHOD 

Figure (1) shows a plan view of the section of the 
Safety Research Coal Mine (SRCM) in which the 
experiments were conducted.  To establish a sensor 
atmosphere which contained diesel emissions, a die-
sel locomotive was positioned in B-Butt either up-



wind of the split formed by 10-Room, or at the en-
trance to 10-Room.  In the latter case a tube was 

 
Figure 1.  Plan view of the SRCM section 

connected to the locomotive’s exhaust port to direct 
the emissions directly into 10-Room.  Identical fire 
sensor types were located at S1 and S2, which were 
18 m and 148 m downwind of the fire zone.  The 
average height and width of 10-Room were 2.0 m 
and 3.9 m, and the average height and width of F-
Butt were 1.9 m and 4.5 m.  The average air flows 
for the experiments were 3.0 m3/s in 10-Room and 
4.4 m3/s in F-Butt.  Table 1 lists the measured air-
flows for the experiments.  The flow ratio refers to 
the airflow increase in F-Butt compared to 10-
Room.  The higher airflow in F-Butt was due to the 
leakage around brattices which block the crosscuts 
from parallel airways into F-Butt.  The dual sensor 
stations with gas and smoke signature dilution be-
tween stations S1 and S2 provided a method to de-
fine two experiments for one mine fire combustion 
event.  There was an average 47 pct increase in the 
ventilation between the two sensor stations. 

The fires were contained in a 0.61-m square tray.  
In order to provide a slow heating of the solid fuels 
which would transition through a smoldering stage 
prior to a flaming combustion stage, a controllable 
heating source was maintained with the use of elec-
trically powered strip heaters.  For the coal fires the 
heater elements were embedded in approximately 14 
kg of Pittsburgh Seam Coal with a diameter less 
than 5 cm.  About 1 kg of coal fines was distributed 
over the coal.  For the conveyor belt combustion ex-
periments about 0.5 m square samples of belt 1.1 cm 
thick with a 3 kg mass were attached to a steel plate 
which was heated from below by the electrical strip 
heaters.  For one combined coal and belt combustion 
experiment a belt sample about 0.3 m by 0.5 m was 
positioned on top of the coal.  The wood combustion 
experiments utilized twenty eight oak sticks, 0.46 m 
long and approximately 1.6 cm square cross section, 

cut from mine support timber arranged in a two-
layer crib set with an approximate total mass of 2 
kg.  The wood crib was placed upon five electrical 
strip heaters.  The identification of the experiments 
is provided in table 1. 

7 RESULTS 

The training data set for the NN consisted of ex-
periments T71S2, T75S1, T79S1, T81S1, T82S1, 
and T85S1.  This data set includes coal, conveyor 
belt, and wood fires in the presence and absence of 
diesel emissions.  The trained neural network was 
used to evaluate the experiments previously con-
ducted, and used in a real-time mode for fire predic-
tion in experiments T87S1, T88S1, and T89S1.  A 
conservative fire alert was marked by the probability 
exceeding 0.5 even though a probability of a fire 
near 1/3 could exceed the probabilities of the other 
two events. 

Figure 2 shows the response of the sensors and 
NN probability at station S1 to a developing primary 
coal fire and secondary belt fire in the presence of 
diesel emissions as part of experiment T88S1.  The 
power supplied to the heater elements varied from  
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Figure 2.  Sensor responses at station S1 and NN fire probabil-
ity for coal and belt combustion in presence of diesel emis-
sions. 

1.6 kW to 2.9 kW over a 20-min time period.  The 
presence of diesel emissions results in a significant 
response of the two MOS sensors, an increase of the 
CO concentration above the 5-ppm alert concentra-
tion, and an insignificant response of the optical path 
smoke sensor prior to heating the combustibles.  As-
sociated with the visual observation of smoke results 
was a rapid increase in the 2600 sensor’s response, 
and less rapid rates of response for the CO, optical 
smoke, and 2105 sensors.  The onset of flaming coal 



combustion resulted in visually obscuring smoke 
which saturated the optical smoke sensor’s response.  
The identification of a fire with the NN probability 
curve occurred 5 min after the visual observation of 
smoke, and 16 min prior to coal flaming combus-
tion.  The flaming belt combustion occurred 10 min 
after the flaming coal combustion.  When the NN 
identified the fire, the optical density was 0.012 m-1, 
which is less than the 0.022 m-1 smoke optical den-
sity alarm value specified in 30CFR75.344 and 
30CFR75.340 (Code of Federal Regulations, 2001).  
The maximum temperature measured at the roof 
above the fire was 98 ° F, which occurred during the 
belt flaming stage.  This temperature is less than the 
thermal alarm temperature of 165 ° F.  In this par-
ticular example, the clear advantage of the NN ap-
proach is its ability to discriminate the false CO alert 
value associated with the diesel emissions, and iden-
tify the incipient smoldering coal combustion stage 
prior to its flaming combustion, and the subsequent 
flaming belt combustion. 

Figure 3 shows the response of the sensors at sta-
tion S1 and the NN probability curve to a belt fire in 
the presence of diesel emissions for experiment 
T78S1.  In this case the ventilation was adjusted to  
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Figure 3.  Sensor responses at station S1 and NN fire probabil-
ity for belt fire in presence of diesel emissions. 

produce CO concentrations from the diesel exhaust 
in excess of 30 ppm prior to heating of the belt.  
This exceeds the 30CFR75 defined 10 ppm alarm 
value.  Smoke emissions were observed when the 
temperature of the belt surface in contact with the 
heated plate reached approximately 560 ºF, and 
flaming combustion commenced when the tempera-
ture reached approximately 870 ºF.  The electrical 
power applied to the heaters varied from 1.1 kW to 
3.3 kW over a 40-min time period.  The NN prob-
ability curve identified the fire 7 min after the visual 
observation of smoke, and 19 min prior to belt flam-
ing combustion.  At the NN identification of the fire 
the optical density was 0.0061 m-1.  A comparison of 

the maximum CO concentration for the experiments 
in figures 2 and 3 prior to heating of the fuel show 
measured CO values of 8 and 36 ppm respectively.  
In figure 2 a CO concentration of 36 ppm, which 
was an average of two CO sensors at the station, was 
not reached until flaming coal combustion occurred.  
This illustrates the uncertainty in increasing a fire 
sensor’s alarm alert and alarm value.  Although 
there will be a scaling of the CO concentration with 
ventilation change, this scaling provides one more 
parameter which would need to be known with cer-
tainty prior to identification of a fire produced CO 
alarm concentration. 

To evaluate the effectiveness of the NN for iden-
tification of a variable quantity nuisance emissions 
source, the trained NN was used to identify a nui-
sance event which consisted of a diesel locomotive 
moving along B-Butt past the air split of 10-Room.  
Figure 4 shows a minimal deviation of the optical 
smoke sensor to the diesel emissions, and the rela-
tively sharp responses of the CO and 2105 sensor to  
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Figure 4.  Sensor responses at station S1 and NN fire probabili-
ties for diesel locomotive variable emissions 

the emissions.  The NN probability curve correctly 
identifies the diesel emissions signature.  Its re-
sponse is coincident with the CO and 2105 re-
sponses.  The fire probability curve shows that in no 
case is there a significant indication of a fire.  The 
advantage of a probability display is the presentation 
in real-time of a continuous source of information 
which mine personnel can use to make decisions.  
For example, the continuous fire probability curve 
can be subdivided into regimes of low, medium, and 
high fire alarm.  The current application program 
provides a real-time visual display of the probability 
values for fire, diesel emissions, and clear air condi-
tions. 

A listing of all the mine fire experiments by com-
bustible, presence or absence of diesel emissions and 
airflows is shown in table 1.  For the experiments 



conducted, the NN prediction of a fire is evaluated 
in terms of the prediction of the fire relative to the 
first visual observation of smoke and flames.  Figure 
5 shows the NN prediction of a fire based upon the 
fire probability exceeding 0.5 as a lag time relative 
to the time of first observation of smoke. (Notation 
T in table 1. is omitted from experiment number on 
coordinate axis in figure 5.)  
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Figure 5. NN prediction of fire relative to first observation of 
smoke, and flaming combustion relative to smoke for each ex-
periment 

 Also shown in the figure is the lag time of the 
flaming combustion relative to first smoke.  For ex-
ample, for experiment T71S2 the fire probability is 
17 min after the first observation of smoke, and 
flaming combustion occurs 67 min after smoke pro-
duction.  Although for experiments T74S1, T74S2, 
T81S2, and T85S2 the fire is identified prior to the 
first observation of smoke, its occurrence is after the 
heating of the combustible was initiated.  For 25 of 
the 26 experiments the NN successfully predicted 
the occurrence of a fire.  Only for one experiment, 
T83S2, did the NN fail to identify the fire, and that 
was due to a relatively small wood fire with dilution 
of the POC at S2.  For the experiments listed in table 
1, the average optical density at which the NN pre-
dicted a fire was 0.0059 m-1 with a standard devia-
tion (SD) of 0.0050 m-1.  This average value is more 
than three SD s less than the minimum smoke alarm 
value of 0.022 m-1 specified in 30CFR75. 
 
Table 1.  Mine fire detection experiments listed by combusti-
ble, presence or absence of diesel emissions, and airflows. 
Test No. 
And Sensor 
Station 

 

Combustible Diesel 
Emis-
sions 

Flow, 
m3 / s 

Flow 
Ratio 

T71S2 Coal no 4.3 1.7 
T74S1 Coal yes 2.7  
T74S2 Coal yes 5.4 2.0 
T75S1 Coal yes 2.0  
T75S2 Coal yes 3.9 1.9 
T76S1 Coal yes 3.3  
T76S2 Coal yes 4.2 1.3 
T77S1 Belt yes 3.3  
T77S2 Belt yes 5.7 1.7 

T78S1 Belt yes 1.9  
T78S2 Belt yes 3.8 2.1 
T79S1 Belt yes 2.8  
T79S2 Belt yes 5.4 1.9 
T81S1 Wood no 1.7  
T81S2 Wood no 3.5 2.1 
T82S1 Wood yes 2.1  
T82S2 Wood yes 4.8 2.3 
T83S1 Wood yes 2.9  
T83S2 Wood yes 2.8 1.0 
T84S1 Wood yes 3.1  
T84S2 Wood yes 4.5 1.4 
T85S1 Belt no 3.1  
T85S2 Belt no 4.2 1.4 
T87S1 Coal yes 5.6  
T88S1 Coal\Belt yes 4.2  
T89S1 Coal no 3.7  

 
The most sensitive sensor for fire detection in the 

selected set of sensors is the optical path smoke sen-
sor.  This is illustrated with a simple test in which a 
rag was ignited upwind of sensor station S1 in the 
SRCM.  
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Figure 6. NN prediction of rag burn with and without optical 
path smoke sensor 

 
 Figure 6 illustrates the response of the 2600 

MOS sensor to the burning of the rag.  The duration 
of this sensor’s response defines clearly the combus-
tion duration.  The fire probabilities with and with-
out the response of the optical path sensor are shown 
in figure 6.  It is seen that the fire probability deter-
mination with the inclusion of the optical path sen-
sor correctly envelopes the fire duration.  The NN 
calculation which excludes the optical path sensor 
results in a much shorter indication of the fire dura-



tion. 
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Figure 7. Comparison of NN fire prediction with response of 
2105 and 2600 
 

Figure 7 illustrates the reason for this result.  The 
2105 MOS sensor responds to the NOx compounds 
generated by the burning rag.  There appears to be 
unknown nitrogen additives in the cloth.  As the 
NOx concentration increases, the fire probability 
evaluation in the absence of the optical smoke sen-
sor incorrectly identifies the combustion as a nui-
sance event. 

8 CONCLUSIONS 

A NN was trained to discriminate a mine fire 
from background diesel emissions based upon the 
response of a multiple sensor array consisting of a 
CO sensor, an optical path smoke sensor, and two 
MOS sensors, one of which has a bimodal response 
to NOx emissions and reducing gases.  An interac-
tive computer program was developed that can ac-
cept real-time data from the data acquisition system 
and evaluate with the NN the probability of a fire. It 
was demonstrated from applications to coal, con-
veyor belt, and wood combustion experiments in the 
presence and absence of diesel emissions that a 
smoldering fire prior to flaming combustion could 
be predicted for 25 of 26 fire detection experiments 
conducted. 
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