
  

Technical Appendix 

Basic Model 

The method used to map the relative risk for BSE is based on a hierarchical Bayesian 

model (1–3), which enables to limit the overdispersion of the relative risk (4) using a smoothing. 

This method was introduced in disease mapping by Clayton and Kaldor (5) through a spatial 

prior named Conditional Autoregressive component, based on Gaussian distributions. 

9431L=iThe delivery areas were labeled  and the observed number of BSE cases in 

each area followed a Poisson distribution. The basic model for the disease mapping, without 

covariate (model 0), was: 
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The distribution parameter λi is the product of the expected number of BSE cases, ei, and 

the relative risk for BSE, ri, in a given area. The expected number of BSE, computed on the basis 

of the overall French incidence of BSE cases, took into account the main demographic structure 

of the bovine population: the dairy versus beef cattle (6–8). So, the expected number of BSE 

cases was: 

  (2) ibeefidairyi BEEFpDAIRYpe .. +=

DAIRYi and BEEFi were the numbers of adult cattle in each area provided by the Agricultural 

Census 2000 and pdairy and pbeef were the overall probabilities of infection assessed from the data. 

The relative risk ri was the variation of the risk compared to a standard risk evaluated on the 

whole French territory. The spatial prior ui was based on the spatial contiguities between areas. 

These components followed a normal distribution:  

( )
iuii uNu τ,~ ∂   (3) 

iu∂  was the mean of the spatial components in the set ∂i of areas adjacent to area i 

(neighbouring) and 
iuτ  was the variance inversely weighted by the number of neighbours of area 

i. This component is also called the ‘clustering effect’ (9). 



  

Estimation Step 

Hierarchical models can be fitted by Markov Chain Monte Carlo (MCMC) method as 

implemented in LinBUGS, (Bayesian inference using Gibbs Sampling, 

http://mathstat.helsinki.fi/openbugs/Home.html). Gibbs Sampling is an adaptation of the general 

Metropolis algorithm (10). It consists in visiting each parameter in turn, and simulating a new 

value for this parameter from its full posterior conditional distribution, given the current values 

for the remaining parameters (11). The 50,000 first cycles of the Markov chain were discarded 

from computations. The effective chain had a size of 250,000 cycles. The parameters were 

estimated with their posterior mean computed from a sampling of 20,000 values (1 value every 5 

cycles was used to reduce the autocorrelation). The stability of the chains was verified with the 

Heidelberger-Welch convergence diagnostic (12). The tests of conformity about the parameters 

were made from the 95% prediction interval given by the empirical quantiles of the chain. The 

spatial prior, named Conditional Autoregressive Model, was implemented in the geographical 

extension of LinBUGS: GeoBUGS (Department of Epidemiology and Public Health of the 

Imperial College at St Mary’s Hospital, London). 

Test of covariates in the model 

We added linearly the covariates use of MBM (MBM), animal fat (FAT) and animal DCP 

(DCP) as prior distributions (13): 

iiii Xue .lnln βλ ++=   (5) 

In this equation, Xi was the vector of covariates for the area i and β  was the vector of the 

regression coefficients. The covariates were incorporated one at a time and then together, so the 

dimensions of Xi and β  varied according to the number of covariates tested. The first component 

of β , the baseline risk 0β , was the average risk. We assumed that the prior distributions of all 

regression parameters were uniform. 

The effect of the covariates on the relative risk were assessed by the Deviance 

Information Criterion (DIC) used to compare models with variable complexity (number of 

parameters and hierarchical levels), fitted with the MCMC method (14). This method is a 

generalisation of the Akaike Information Criterion that is not appropriate for hierarchical models. 

DIC is calculated by adding the effective number of parameters (complexity) to the posterior 



  

mean deviance (adequacy) of a model. The effective number of parameters is estimated by the 

difference between the posterior mean of the deviance and the deviance at the posterior estimates 

of the parameters of interest. The ‘best fit’ model is the one with the smallest DIC value. This 

criterion was assessed at the same time as the MCMC simulation. When covariates were chosen 

with the DIC, we performed a conformity test 0:0 =βH  on the regression coefficient based on 

the 95% prediction interval given by the empirical quantiles of MCMC simulations. An 

estimation of the p-value for this test was computed with the n simulated values of the Markov 

chain of the parameter ⎟
⎠
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mp ,1minβ  by  where m was the number of values less than 0 

(15). Finally, the estimated regression parameters  can be interpreted as an odds ratio 

computed as

β̂

( )β̂exp . The odds ratio measured how much the relative risk for BSE (in a delivery 

area) was increased for each unit of the covariate (in this case a 100% increase of the proportion 

of factories using a given byproduct in the area). 
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