
Anaplasma capra is an emerging tickborne zoo-
notic pathogen in the genus Anaplasma, fam-

ily Anaplasmataceae, and was initially identified in  
blood samples from asymptomatic goats (Capra  

aegagrus hircus) and a febrile human patient with tick-
bite history in China in 2015 (1). The patient infected 
with A. capra had fever, headache, malaise, dizziness, 
myalgia, gastrointestinal symptoms, rash, lymphade-
nopathy, and abnormalities in cerebrospinal fluid 
pleocytosis and hepatic aminotransferase. Since then, 
A. capra has been detected in various domestic animals 
(e.g., goats, sheeps, cattle, yaks, and dogs) (2–5) and 
wild animals (e.g., takins, muntjacs, water deer, musk 
deer, onagers, serows, and brown hares) (6–10), and in 
a wide range of ticks (e.g., Ixodes persulcatus, Haemaphy-
salis longicornis, H. qinghaiensis, Dermacentor abaensis, 
D. nuttalli, and Rhipicephalus microplus [1,11–14]) across 
China and around the world (2,7–10,15,16), posing a 
potential threat to the health of humans and animals.

Members of the family Anaplasmataceae have 
complex life cycles involving vertebrate hosts and 
hematophagous ticks, many of which have emerged 
as human pathogens. The genus Anaplasma was pro-
posed according to the phylogenetic analyses based 
on 16S rRNA and groEL sequences (17) and initially 
encompassed 6 species: A. phagocytophilum, A. margi-
nale, A. centrale, A. ovis, A. platys, and A. bovis. Sub-
sequently, 2 candidate novel species (A. capra and A. 
odocoilei) and other unclassified genovariants (1,18–20) 
were included in the List of Prokaryotic Names with 
Standing in Nomenclature (https://www.bacterio.
net) pending validation. To date, 5 Anaplasma species 
have been known to infect humans: A. phagocytophi-
lum, A. capra, A. ovis, A. platys, and A. bovis (21). Since 
the A. marginale genome sequence was reported in 
2005 (22), a total of 24 A. marginale genomes (23), 32 A. 
phagocytophilum genomes (24,25), 1 A. centrale genome 
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Anaplasma capra is an emerging tickborne human 
pathogen initially recognized in China in 2015; it has 
been reported in ticks and in a wide range of domestic 
and wild animals worldwide. We describe whole-genome 
sequences of 2 A. capra strains from metagenomic se-
quencing of purified erythrocytes from infected goats in 
China. The genome of A. capra was the smallest among 
members of the genus Anaplasma. The genomes of the 
2 A. capra strains contained comparable G+C content 
and numbers of pseudogenes with intraerythrocytic Ana-
plasma species. The 2 A. capra strains had 54 unique 
genes. The prevalence of A. capra was high among 
goats in the 2 endemic areas. Phylogenetic analyses 
revealed that the A. capra strains detected in this study 
were basically classified into 2 subclusters with those 
previously detected in Asia. Our findings clarify details of 
the genomic characteristics of A. capra and shed light on 
its genetic diversity.
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(26), 2 A. ovis genomes (27), and 1 A. platys genome 
(28) have been sequenced and deposited in GenBank. 
Although A. capra has been extensively detected in 
ticks and animal hosts worldwide, no genome of 
the emerging pathogen has been determined so far, 
which has hindered us from better understanding its 
genetic features and pathogenesis. Considering A. 
capra is an intraerythrocytic pathogen and abundant 
in blood samples of host goats (1,29), we separated 
erythrocytes from the blood of infected goats to en-
rich the bacteria and generated the entire genome of 
A. capra using metagenome assembly to promote bet-
ter understanding of this emerging pathogen, to com-
pare the characteristics of A. capra genomes with pre-
viously published genomes of other Anaplasma and 
related species, and to evaluate intraspecies genetic 
diversity of A. capra in different geographic locations 
and tick species across China.

Materials and Methods

Sample Collection and Preparation
We collected EDTA blood samples from 3 flocks 
of goats in Shandong Province and a flock of goats 
in Guizhou Province, China (Appendix Figure 1, 
https://wwwnc.cdc.gov/EID/article/29/9/23-
0131-App1.pdf), during September 2021–July 2022. 
Meanwhile, we prepared blood smears for some 
goats. We collected host-seeking ticks in the same ar-
eas where the infected goats lived by dragging white 
flags over vegetation. An entomologist (Y.S.) iden-
tified all ticks to the species level and developmen-
tal stage. We extracted DNA from each goat blood 
sample or tick by using a High Pure PCR Template 
Preparation Kit (Roche, https://www.roche.com) ac-
cording to the manufacturer’s instructions.

PCRs and Sequencing
We conducted a nested PCR specific for the citrate 
synthase (gltA) gene of A. capra (Appendix Table 1) to 
screen all goat blood and tick samples, as previously 
described (1). We amplified all the positive samples 
for gltA by specific PCRs targeting the 16S rRNA, 
msp4, and groEL genes of A. capra (Appendix Table 1). 
We sequenced all amplicons to confirm the correct-
ness of PCR results and conducted a SYBR Green–
based quantitative PCR (qPCR) targeting different 
regions of the gltA gene by using a specific primer 
(Appendix Table 1).

Fluorescence In Situ Hybridization
We used fluorescence in situ hybridization (FISH) to 
observe the A. capra on blood smears. We designed 

the probe on the basis of the 16S rRNA full-length 
sequence of A. capra (Appendix Table 2) and labeled 
it with Quasar 570. We resuspended the pooled 
FISH probes in a final concentration of 25 µmol/L in 
RNase-free storage buffer, which we protected from 
light and stored at –20°C. We performed FISH on 
the prepared blood smear with a commercial kit (Bi-
osearch Technologies, https://www.biosearchtech.
com), according to the manufacturer’s instructions.

Enrichment of A. capra for Genomic Sequencing
We separated erythrocytes from infected goats by 
conducting gradient centrifugation using cell separa-
tion solution (Eppendorf, https://www.eppendorf.
com) for 20 min at 200 × g at 4°C. Then, we added 
4 times volume of precooled (4°C) erythrocyte lysis 
buffer (Solarbio, http://www.solarbio.net) to the iso-
lated erythrocytes by gentle pipetting to ensure ad-
equate mixing. After placing the lysis solution at 4°C 
for 10 min, we centrifuged the solution at 350 × g for 
10 min to remove residual blood cells. After that treat-
ment, we maximally removed the host DNA in sam-
ples. Finally, we centrifuged the supernatant at 20,000 
× g at 4°C for 30 min. We resuspended the pooled A. 
capra for DNA extraction by using the High Pure PCR 
Template Preparation Kit (Roche). We then construct-
ed a sequencing library by using the AxyPrep MAG 
PCR Clean Up Kit (Fisher Scientific, https://www.
fishersci.com) for an MGI sequencing set (https://
en.mgi-tech.com). We prepared the sequencing li-
brary according to the Whole Genome Sequencing Li-
brary Preparation Protocol (MGI). We sequenced the 
paired-end libraries with a read length of 2 × 150 bp 
on a DNBseq-T7 platform at Grandomics Gene Tech-
nology Beijing Co. Ltd (Beijing, China).

Genome Assembly and Comparative Analyses
We mapped the clean reads to the goat (Capra 
hircus) reference genome (GenBank accession no. 
GCF_001704415) by using SAMtools 1.14 (30) to 
discard host-derived reads. We de novo assem-
bled contigs from the unmapped reads by using 
metaSPAdes 3.15.3 (31). We performed contig bin-
ning by using MetaBAT 2.15 (32) and evaluated 
assembly quality by using CheckM version 1.1.3 
in linage_wf mode, which searches for universal 
single-copy marker genes and deduces complete-
ness and contamination on the basis of presence 
and absence of these genes (33). We generated G+C 
content, genome completeness, and annotation 
information and depicted them by using an ap-
proach described previously (34,35). We estimated 
average nucleotide identity (ANI) and DNA–DNA  
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hybridization (DDH) by using fastANI 1.32 (36) 
and GGDC (https://ggdc.dsmz.de/ggdc.php).

Phylogenetic Analyses
We deposited in GenBank the results of the phyloge-
netic analysis of the whole genomes of the 2 A. capra 
strains and all the genomes of Anaplasma species by 
using Orthofinder 2.5.4 (37), after eliminating the 
poorly aligned positions and divergent regions by us-
ing Gblocks 0.91b. We aligned trimmed sequence by 
using Muscle 5.1 (R.C. Edgar, unpub. data, https://
doi.org/10.1101/2021.06.20.449169) and constructed 
the phylogenetic tree by using iqtree 2.2.0.3 (38). Fur-
thermore, we conducted phylogenetic analyses on A. 
capra gltA, groEL, 16S rRNA, and msp4 genes obtained 
from infected goats and ticks by using the maximum-
likelihood method in MEGA11 (39).

Functional Analysis of Predicted Genes
To find difference in the Kyoto Encyclopedia of Genes 
and Genomes (KEGG) between the 2 strains of A. cap-
ra and other species in the genus Anaplasma, were an-
notated orthogroup sequences by using KOfam 1.4.0 
(40) and illustrated them using a Venn diagram. We 
used the software eggNOG-Mapper 2.1.7 to deter-
mine the Clusters of Orthologous Group (COG) cat-
egories for protein encoding regions (41).

Results
Forty-three (59.7%) of 72 goat blood samples were 
positive for gltA gene of A. capra. We chose 2 blood 
samples (1 from a 2-year-old female goat in Shan-
dong Province and another from a 10-month-old fe-
male goat in Guizhou Province) (Appendix Figure 
1) for next-generation sequencing because they had 
high bacterial loads (8.4 × 106 gltA gene copies/mL 
blood for the goat in Shandong Province and 2.0 × 106 

gltA gene copies/mL blood for the goat in Guizhou 
Province) as estimated by qPCR (Appendix Table 1). 
In addition, we visualized A. capra by specific FISH in 
erythrocytes on the blood smear prepared from the 
goat in Shandong Province for next-generation se-
quencing (Figure 1).

The metagenome sequencing resulted in >38 mil-
lion 150-bp clean reads from each sample. Despite 
primary removing of host DNA, 95.9% and 93.3% of 
reads in the 2 samples were mapped to the goat ge-
nome and discarded. The remaining reads were sub-
sequently de novo assembled into contigs by using 
the SPAdes 3.15.3 with meta parameters (31). The 2 
assembled A. capra genomes were named A. capra str. 
BIME1 (GenBank accession no. GCA_025628785.1) 
and A. capra str. BIME2 (GenBank accession no. 

GCA_025628805.1), and had a higher level of com-
pleteness (99.79% for BIME1 and 99.36% for BIME2). 
The genome of A. capra was the smallest (≈1.07 Mb) 
among those in the genus Anaplasma and the second 
smallest genome of the family Anaplasmataceae, just 
after Neorickettsia sennetsu (0.859 Mb) (24). The ge-
nome sequences of the 2 strains shared 99.89% nucle-
otide similarity with each other.

We compared the 2 A. capra genomes with other 
representative species strains in the genus Anaplasma 
(Appendix Table 3). The G+C content (48.3% for both) 
of the 2 A. capra genomes was similar to those of A. ovis, 
A. marginale, and A. centrale, which are all intraerythro-
cytic pathogens. The A. capra genomes yielded a total 
of 929 and 932 genes, of which 862 and 863, respec-
tively, represented coding sequences. They possessed 
37 tRNAs and a complete ribosomal RNA operon, in 
which the 16S rRNA gene was separated from the 23S-
5S rRNA gene pair (Figure 2) as displayed by other 
members of the order Rickettsiales (42). The 2 strains 
of A. capra and other intraerythrocytic Anaplasma spe-
cies, including A. ovis, A. centrale, and A. marginale, con-
tained comparable numbers of pseudogenes that have 
lost functions owing to mutation accumulation and are 
observed more frequently in obligate intracellular bac-
teria where the lost gene functions are compensated 
by the host cells (43). Of note, A. phagocytophilum has 
≈4-fold more pseudogenes than the other Anaplasma 
species (Appendix Table 3).

The estimated values of ANI and DDH between 
A. capra and other Anaplasma species suggested that A. 
capra were distinct from the other species. On the basis 
of ANI values, A. capra str. BIME1 was most similar 
to A. marginale, whereas A. capra str. BIME2 was most 
similar to A. ovis. The DDH results revealed that both A. 
capra strains were most close to A. marginale (Appendix 
Table 4). The phylogenetic analysis based on the single 
copy genes revealed that the 2 A. capra strains together 
occupied a distinct branch and were more closely re-
lated to A. ovis, A. marginale, and A. centrale than to A. 
phagocytophilum and A. platys in the genus Anaplasma 
(Figure 3, panel A). To explore the gene differences in 
species in the genus Anaplasma, we used Orthofinder 
(37) to identify the homologous genes. All species in 
the genus Anaplasma shared 643 genes in common, and 
the 2 A. capra strains together with other intraeryth-
rocytic Anaplasma species (A. ovis, A. centrale, and A. 
marginale) shared 75 genes that are not present in the 
other 2 species, A. phagocytophilum and A. platys. Com-
pared with other members of the genus Anaplasma, 14 
genes were not possessed by A. capra. Of note, a total 
of 54 genes were only shared by the 2 A. capra strains, 
which had other 14 distinct genes in BIME1 and 10 in 
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BIME2 (Figure 3, panel B). In addition, we identified 25 
virulent genes in the 2 A. capra strains that were shared 
by all the species in the genus of Anaplasma, including 
virB2 gene family, virB6 gene family, virB4 gene family, 
virB8 gene family, virB9 gene family, and virB3, virB7, 
virB10, virB11, virD4, and Ats-1 genes that encode the 
type 4 secretion system and membrane protein-encod-
ing genes (Appendix Table 5).

Among the 54 unique genes of A. capra, a total 
of 37 were unclassified, none of which was assigned 
to any KEGG category. Six of the remaining 17 genes 
were associated with metabolic processing, 5 genes 
were related to genetic information processing, and 
6 were involved in signaling and cellular processing 
(Appendix Table 6). Among them, the most notewor-
thy of genes were RSF1, a gene related to the repair 
of DNA double-strand breaks (44), and desk, which 

encodes a protein acting as a kinase at cold tempera-
tures in Bacillus subtilis (45).

We classified the coding proteins of the 2 A. capra 
strains (BIME1 and BIME2) into functional clusters of 
orthologous group (COG) categories and compared 
them with those of representative species strains in the 
genus Anaplasma (Appendix Table 7). Most proteins 
were involved in translation, ribosomal structure and 
biogenesis, energy production and conversion, and nu-
trient (including amino acid, nucleotide, carbohydrate, 
coenzyme, and lipid) transport and metabolism, all of 
which were essential for bacterial survival. Of note, the 
number of genes encoding cell wall and membrane in 
A. platys was substantially lower than those of other 
Anaplasma species. In addition, ≈10% of the proteins 
did not assign to any COG category and were classi-
fied as function unknown in each species.
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Figure 1. Anaplasma capra in 
the erythrocytes of an infected 
goat detected by fluorescence in 
situ hybridization (FISH) in study 
of emerging intraerythrocytic 
A. capra and high prevalence 
in goats, China. Glowing red 
indicates A. capra; blue indicates 
leukocyte nucleus stained with 
fluorescent antibody blocker 
containing DAPI. A) FISH results 
under fluorescence microscope of 
A. capra. B) FISH results of  
A. capra–negative blood smear. 
C) FISH results showing different 
shapes and sizes of A. capra  
in erythrocytes.
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We screened blood samples from 3 flocks of 54 
goats in Shandong Province and a flock of 18 goats 
in Guizhou Province (Appendix Figure 1) by using 
nested PCR and qPCR targeting different regions of 
the gltA gene (Appendix Table 1). The overall positive 
rate was 59.7% (95% CI 48.4%–71.0%), and the positive 
rate was significantly higher among goats in Guizhou 
Province than in Shandong Province (77.8% vs. 53.7%; 
p<0.001). Accordingly, among the H. longicornis ticks 
collected from the same sites of the positive goats, the 
overall positive rate was 8.0% (95% CI 4.2%–11.8%), 
and the A. capra infection rate was significantly higher 
among ticks in Guizhou Province than that in Shan-
dong Province (15.8% vs. 4.9%; p<0.001) (Appendix 
Table 8). To understand the genetic diversity, we am-
plified A. capra 16S rRNA (1,500 bp), groEL (1264 bp), 
and msp4 (799 bp) genes from those positive samples. 
We compared the nucleotide identities for each gene 
sequence and (Appendix Figures 2–5; GenBank acces-
sion numbers are provided).

The gltA genes amplified from either goats or ticks 
in this study had 99.7%–100% identity with each other 
and with the strain that infected humans (Appendix 
Figure 2). The phylogenetic analysis based on gltA gene 
revealed that the A. capra sequences in this study were 
in an independent cluster from those previously re-
ported in various animals from China and South Korea 
but distinct from those detected in wild and domestic 
animals from Europe and Kyrgystan. The South Korea 

water deer seemed to be capable of carrying both vari-
ants of A. capra (Figure 4, panel A). No A. capra groEL 
gene was acquired from tick samples, and the sequences 
from goats shared 99.4%–100% identity with each other 
and 99.8%–100% with sequences from humans (Ap-
pendix Figure 3). Similarly, the phylogenetic analyses 
based on the groEL gene revealed that A. capra strains 
of this study clustered with those from humans, dogs, 
and domestic ruminants in Asia but were distinguished 
from those in Europe (Figure 4, panel B). The entire 16S 
rRNA gene sequences (1,500 bp) of A. capra detected in 
goats and H. longicornis ticks from either Shandong or 
Guizhou Province shared average similarity of >99.7% 
from each other and from the sequence detected in hu-
mans (Appendix Figure 4). The phylogenetic tree based 
on 16S rRNA gene sequences indicated that all the A. 
capra strains detected in this study were in the same 
clade with previously reported strains in Asia (Figure 
4, panel C). The A. capra msp4 gene sequences were also 
relatively conserved (Appendix Figure 5) among the 
goats and ticks, and the topology of phylogenetic tree 
based on msp4 gene were similar to that based on the 
16S rRNA gene, in which all A. capra sequences clus-
tered in the clade different from other members of Ana-
plasma species (Figure 4, panel D).

Discussion
Whole-genome assembly of obligate intracellular bac-
teria has usually been hindered by the DNA presence 
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Figure 2. Circular map of Anaplasma capra strains BIME1 and BIME2 genomes in study of emerging intraerythrocytic A. capra and high 
prevalence in goats, China. The outermost ring shows the genome size in 100-kb increments. Moving inward, the blue-green and red 
marks indicate the coding sequences on the reverse and forward strands. The fourth ring represents the sequencing depth. The fifth 
ring shows the G+C skew, and the sixth rings show and G+C content. The location of groEL and gltA genes and the complete ribosomal 
RNA genes (5S rRNA, 16S rRNA, and 23S rRNA) within the genome are indicated.
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of host cells. In this study, we first assembled 2 com-
plete genomes of A. capra from the red blood cells of 
infected goats by using the metagenomic sequencing 
strategy. Because A. capra is an intraerythrocytic patho-
gen (1,29), we separated erythrocytes from the periph-
ery blood of the infected goats and then lysed them for 
maximum removal of goat DNA. After metagenomic 
next-generation sequencing, we discarded the remain-
ing goat genomic sequences and successfully assem-
bled the A. capra genomes from 2 infected goats. The 
high percentage of reads from goat could be attribut-
able to the low abundance of A. capra in erythrocytes or 
the fact that all other host cells rather than erythrocytes 
were not totally removed during the isolation of eryth-
rocytes. In any case, the completeness of the 2 A. capra 
genomes are up to 99.79% for BIME1 and 99.36% for 
BIME2. The genome sizes obtained in this study reach 
1,066,874 bp for BIME1 and 1,059,758 bp for BIME2. 
Therefore, their predicted sizes are ≈1.07 Mbp, which 
remain the smallest genome in the genus of Anaplasma. 
The phylogenetic analysis based on genome sequences 
and the comparative analyses of genomic characteris-
tics provide the evidence that A. capra is closely related 
to other intraerythrocytic Anaplasma species, including 
A. ovis, A. centrale, and A. marginale.

The genome of A. capra consists of a single circu-
lar chromosome with a total size of 1.07 Mbp and has 

862 protein-coding genes, which is smaller than other 
Anaplasma species. In fact, all the Anaplasma genomes 
sequenced so far are relatively small compared with 
free-living bacteria. The small genome size might be 
because a part of the intracellular bacterial functions 
has been compensated by the host cells, a process of 
reductive evolution that has occurred in the order 
Rickettsiales because of long-term intracellular as-
sociation with eukaryotic hosts (46). This reductive 
evolution is associated with the frequent formation of 
pseudogenes, affecting distinct loci in different spe-
cies (47). Moreover, we found that the G+C content 
of A. capra is close to that of A. ovis, A. marginale, and 
A. centrale. Of note, their relatedness also seems to be 
closest according to the phylogenetic analysis. The 
common invasiveness of erythrocytes also accounts 
for their high similarity.

A limitation of this study is that both the A. capra 
genomes were directly derived from the blood sam-
ples of infected goats through metagenomic next-gen-
eration sequencing. Unfortunately, we did not obtain 
the genomes at chromosome level, which usually re-
lies on 3rd-generation sequencing of an isolate. In any 
case, this study reveals the genomic characteristics of 
A. capra and sheds light on its genetic diversity.

The high prevalence of A. capra in goats from 
Shandong and Guizhou Provinces in this study  
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Figure 3. Phylogenetic tree and genomic comparison among Anaplasma species in study of emerging intraerythrocytic A. capra 
and high prevalence in goats, China. A) Phylogenetic tree of Anaplasma species based on all the genomic sequences deposited in 
GenBank, constructed by using maximum-likelihood method with Ehrlichia chaffeensis as an outgroup. The percentages of replicate 
trees in which the associated taxa clustered together in the bootstrap test (1,000 replicates) are shown next to the branches. B) 
Differences in gene contents among Anaplasma species strains. Venn diagrams show the distribution of shared and unique gene 
clusters among representative Anaplasma species.
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further indicate that domestic ruminants might be the 
main animal hosts, as suggested by previous studies 
(2–5). H. longicornis ticks collected from the same sites 
of the positive goats either in Shandong Province or 
Guizhou Province are naturally infected with A. capra,  

implying the role of the tick species in transmission 
of the pathogen. Phylogenetic analyses based on 
the gltA and groEL genes demonstrate that A. capra 
strains detected from goats and H. longicornis ticks in 
this study are clustered in the same clade with those 
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Figure 4. Phylogenetic analysis of Anaplasma capra based on nucleotide sequences of 4 genes in study of emerging intraerythrocytic 
A. capra and high prevalence in goats, China. A) Phylogenetic tree based on 536 bp nucleotide sequence of gltA. B) Phylogenetic tree 
based on 620 bp nucleotide sequence of groEL. C) Phylogenetic tree based on 860 bp nucleotide sequence of 16S rRNA. D) Phylogenetic 
tree based on 642 bp nucleotide sequence of msp4. We performed bootstrap analysis of 1,000 replicates to assess the reliability of the 
reconstructed phylogenies. GenBank accession numbers are provided. Scale bars show estimated evolutionary distance.
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from humans, domestic ruminants, dogs, and Korean 
water deer (2,3,5,10). Of note, another clade of A. cap-
ra strains is mainly found in the wild and domestic 
animals from Europe and Kyrgyzstan (6,10,48). Those 
findings suggest that the enzootic cycles in various 
regions of the world might be different. Public health 
professionals should pay enough attention and for-
mulate prevention and control strategies to reduce 
the health threat of the emerging tickborne pathogen 
to humans in other countries besides China.
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Appendix Table 1. Nucleotide sequence of primers used in the study 

Target 
Primer 
name Primer sequence (5′-3′) 

Annealing 
temperature (°C) Amplicon size (bp) References 

rrs Eh-out1 TTGAGAGTTTGATCCTGGCTCAGAACG 50 1500  (1) 
3–17U WAAGGWGGTAATCCAGC 

gltA Outer-f GCGATTTTAGAGTGYGGAGATTG 55 1076  (2) 
Outer-r TACAATACCGGAGTAAAAGTCAA 
Inner-f GGGTTCMTGTCYACTGCTGCGTG 51 792  (2) 
Inner-r TTGGATCGTARTTCTTGTAGACC 

groEL Forward GCGAGGCGTTAGACAAGTCCATT 56 1264  (2) 
Reverse TCCAGAGATGCAAGCGTGTATAG 

msp4 Forward CAGTCTGCGCCTGCTCCCTAC 55 799  (2) 
Reverse AGGAATCTTGCTCCAAGGTTA 

msp2 Forward GCGTGTTGATGGCTCTGGT 51 1139  (2) 
Reverse ACCAGTATCCTTATTTTTACC 

gltA* Forward CGAATCTATTTGCCTGCTT 60 200 This study 
Reverse ATCGTAATTCTTGTAGACCCT 

*This pair of primers is used for the quantitative PCR. 
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Appendix Table 2. Probe sequences of fluorescence in situ hybridization (FISH) 
Probe sequence (5′ to 3′) Probe sequence name 
TTCTGAGCCAGGATCAAACT AC16S-1 
TCGACTTGCATGTGTTAAGC AC16S-2 
AGCAAGCTACAGATTTGGTC AC16S-3 
CGTCTGCCACTAACCAAATC AC16S-4 
AGATTCCTATGCATTACTCA AC16S-5 
TGGCTATCCCATACTACTAG AC16S-6 
GGATTATACGGTATTACCCA AC16S-7 
ATAGCGATAAATCTTTCCCC AC16S-8 
CCAACTAGCTAATCCGACAT AC16S-9 
ACAGATCACTGCCTTGGTAG AC16S-10 
TGATCATCCTCTCAGACCAG AC16S-11 
CATTGTCCAATATTCCCCAC AC16S-12 
CATAGCTGGATCAGGCTTGC AC16S-13 
TTTTACAACCCTAAGGCCTT AC16S-14 
TCATTATCTTCCCTACTGAA AC16S-15 
GGGACTTCTTCTGTAGGTAC AC16S-16 
CGCCCAATAATTCCGAACAA AC16S-17 
TTAACTTACCAAACCGCCTA AC16S-18 
GTTAAGCCCTGGTATTTCAC AC16S-19 
TGCAGTATTAAAAGCAGCCC AC16S-20 
TATCCTCTTCCGGACTCTAG AC16S-21 
ATTTCACCTCTACACTAGGA AC16S-22 
GTGTTCCTCCTAATATCTAC AC16S-23 
CAGGGTATCTAATCCTGTTT AC16S-24 
TCAGCACTCATCGTTTACAG AC16S-25 
CAACACAGAGGCAAAAGCCC AC16S-26 
CGGAGTGCTTAACGCGTTAG AC16S-27 
CCTTTGAGTTTTAGTCTTGC AC16S-28 
CGAATTAAACCACATGCTCC AC16S-29 
TGGTAAGGTTTTTCGCGTTG AC16S-30 
ATCTAACCTCCATGTCAAGA AC16S-31 
AACTGCGCCTTTCTGTTAAG AC16S-32 
ACGAGCTGACGACAGCCATG AC16S-33 
ACTTAACCCAACATCTCACG AC16S-34 
ATGAGGGTTACGCTCGTTGC AC16S-35 
CATTACCCGCTGGTAACTAA AC16S-36 
CACCGGCAGTTTCCTTAAAG AC16S-37 
CGTGCTGACTTGACATCATC AC16S-38 
CATTGTAGCACGTGTGTAGC AC16S-39 
CGACGTTGCAACCTATTGTG AC16S-40 
CTTTTACGGATTAGCTCAGC AC16S-41 
CTCGAGTTGCAGAGGACAAT AC16S-42 
TCCACGATTACTAGCGATTC AC16S-43 
CGAGAACGTATTCACCGTGG AC16S-44 
TGACGGGCAGTGTGTACAAG AC16S-45 
TTTGAGTTAAGCCAATTCCC AC16S-46 
CACCGACCCAACCTTAAATG AC16S-47 
TACAGCTACCTTGTTACGAC AC16S-48 
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Appendix Table 3. Genomic characteristics of Anaplasma capra strains BIME1 and BIME2 compared with that of representative Anaplasma species strains* 

Characteristic 

Strain (GenBank accession no.) 

A. capra str. BIME1 
(GCA_025628785.1) 

A. capra str. BIME2 
(GCA_025628805.1) 

A. ovis str. Haibei 
(NZ_CP015994.1) 

A. centrale str. Israel 
(NC_013532.1) 

A. marginale str. 
Florida 

(NC_012026.1) 
A. platys str. S3 

(NZ_CP046391.1) 
A. phagocytophilum 
str. JM (NC_021880) 

Size (bp) 1,066,874 1,059,758 1,214,674 1,206,806 1,202,435 1,196,811 1,481,598 
GC rate (%) 48.32 48.32 48.9 50.0 49.8 45.5 41.6 
Gene counts (n) 929 932 1021 993 992 940 1155 
CDS counts (n) 862 863 945 922 913 882 997 
Pseudogenes (n) 27 29 32 27 35 17 114 
rRNAs (n) 3 3 3 3 3 3 3 
tRNAs (n) 37 37 37 37 37 34 37 
Completeness (%) 99.79 99.36  NA NA NA NA NA 
*bp, base pair; CDS, coding sequence; rRNA, ribosomal ribonucleic acid; tRNA, transfer ribonucleic acid; NA, not applicable. 
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Appendix Table 4. The estimated values of average nucleotide identity (ANI) and DNA-DNA hybridization (DDH) between 

Anaplasma capra and the other Anaplasma species 

Species 
ANI DDH 

A. capra str. BIME1 A. capra str. BIME2 A. capra str. BIME1 A. capra str. BIME2 
A. ovis 78.0783 

(GCA_002849345.1) 
78.0878 

(GCA_002214625.1) 
17.4 

(GCA_002849345.1) 
17.5 

(GCA_002849345.1) 
A. marginale 78.2897 

(GCA_008801305.1) 
77.9471 

(GCA_000020305.1) 
17.9 

(GCA_000172475.1) 
17.9 

(GCA_000172475.1) 
A. centrale 77.9688 

(GCA_000024505.1) 
77.8613 

(GCA_000024505.1) 
17.4 

(GCA_000024505.1) 
17.4 

(GCA_000024505.1) 
A. phagocytophilum (-) (-) 13.0 

(GCA_023476575.1) 
13.0 

(GCA_023278635.1) 
A. platys (-) (-) 13.1 

(GCA_012790675.1) 
13.1 

(GCA_012790675.1) 
 

 

 

Appendix Table 5. Virulence genes in Anaplasma capra str. BIME1 and BIME2 

Gene Description 
GenBank accession number 

A. capra str. BIME1 A. capra str. BIME2 
virB2 type IV secretion system protein VirB2 family MCU7611221.1 

MCU7611222.1 
MCU7611775.1 
MCU7611780.1 
MCU7611781.1 
MCU7611782.1 

MCU7612774.1 
MCU7612775.1 
MCU7612776.1 

virB3 type IV secretion system protein VirB3 MCU7611541.1 MCU7612020.1 
virB4 type IV secretion system protein VirB4 family MCU7611542.1 

MCU7611779.1 
MCU7612019.1 
MCU7612773.1 

virB6 type IV secretion system protein VirB6 family MCU7611543.1 MCU7612018.1 
MCU7611544.1 MCU7612017.1 
MCU7611545.1 MCU7612016.1 
MCU7611546.1 MCU7612015.1 

virB7 type IV secretion system protein VirB7 MCU7611364.1 MCU7612438.1 
virB8 type IV secretion system protein VirB8 family MCU7611203.1 MCU7612293.1 

MCU7611581.1 MCU7611980.1 
virB9 type IV secretion system protein VirB9 family MCU7611202.1 MCU7612294.1 

MCU7611762.1 MCU7612488.1 
virB10 type IV secretion system protein VirB10 MCU7611201.1 MCU7612295.1 
virB11 type IV secretion system ATPase VirB11 MCU7611200.1 MCU7612296.1 
virD4 type IV secretion system component VirD4 MCU7611199.1 MCU7612297.1 
Ats-1 Anaplasma T4SS translocated substrate-1 MCU7611426.1 MCU7612135.1 
ompA outer membrane protein OmpA MCU7611514.1 MCU7612047.1 
Asp14 14-kDa Anaplasma surface protein Asp14 MCU7611843.1 MCU7612563.1 

 

Appendix Table 6. Genes predicted to be unique in Anaplasma capra str. BIME1 and BIME2 
Gene Protein Function 
menA 1,4-dihydroxy-2-naphthoate 

polyprenyltransferase 
Metabolic processing Menaquinone (vitamin K2) 

biosynthesis 
unknown Glycosyltransferase 2 family protein Glycan metabolism 
MKK9 Mitogen-activated protein kinase kinase 9 Ethylene and camalexin 

biosynthesis 
MqnX Aminodeoxyfutalosine deaminase Menaquinone Biosynthesis 
CPS1 Peregrinol diphosphate synthase Metabolism 
atuF Geranyl-CoA carboxylase α subunit Geraniol degradation 
Zbtb46 Zinc finger and BTB domain-containing protein 

46 
Genetic information 

processing 
Transcription factor 

UFL1 E3 UFM1-protein ligase 1 Cellular regulation 
Hmbox1 Homeobox-containing protein 1 Transcription factor 
RSF1 Remodeling and spacing factor 1 DNA repair 
Ara54 E3 ubiquitin-protein ligase Cellular regulation 
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Gene Protein Function 
MACC1 Metastasis-associated in colon cancer protein 

1 
Signaling and cellular 

processing 
Signaling regulator 

dia Diaphanous protein Cytokinesis 
desK Membrane-associated kinase DesK Membrane-associated kinase 
hbhA Heparin binding hemagglutinin Virulence factor 
Mrgprg Mas-related G protein-coupled receptor 

member G 
G protein-coupled receptor 

unknown Membrane protein Protein with domain of unknown 
function 

unknown* unclassified protein Function unknown 
*Including 37 unclassified genes. 

 

 

 

Appendix Table 7. Functional Clusters of Orthologous Groups of protein-coding genes from the representative Anaplasma species 

strains 

Category 
Functional 
category 

A. capra  
str. BIME1 

A. capra  
str. BIME2 

A. ovis 
str. Haibei 

A. centrale 
str. Israel 

A. marginale  
str. Florida 

A. platys 
str. S3 

A. phagocytophilum 
str. JM 

Number of genes 
A RNA 

processing and 
modification 

1 1 1 1 1 1 1 

B Chromatin 
structure and 

dynamics 

0 0 0 0 0 0 0 

C Energy 
production and 

conversion 

67 67 74 70 68 71 74 

D Cell cycle 
control, cell 

division, 
chromosome 
partitioning 

16 15 18 17 18 11 14 

E Amino acid 
transport and 
metabolism 

31 31 35 34 35 30 25 

F Nucleotide 
transport and 
metabolism 

54 54 55 54 54 52 56 

G Carbohydrate 
transport and 
metabolism 

21 20 26 26 25 27 22 

H Coenzyme 
transport and 
metabolism 

65 65 67 64 66 58 68 

I Lipid transport 
and metabolism 

28 28 30 29 28 29 29 

J Translation, 
ribosomal 

structure and 
biogenesis 

126 127 131 130 130 128 137 

K Transcription 18 17 21 20 21 19 21 
L Replication, 

recombination 
and repair 

52 53 53 54 52 51 57 

M Cell 
wall/membrane/

envelope 
biogenesis 

48 47 62 58 60 35 62 

N Cell motility 2 2 2 2 2 2 2 
O Posttranslation

al modification, 
protein 

turnover, 
chaperones 

44 44 43 43 43 43 45 
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Category 
Functional 
category 

A. capra  
str. BIME1 

A. capra  
str. BIME2 

A. ovis 
str. Haibei 

A. centrale 
str. Israel 

A. marginale  
str. Florida 

A. platys 
str. S3 

A. phagocytophilum 
str. JM 

Number of genes 
P Inorganic ion 

transport and 
metabolism 

31 31 36 35 34 35 34 

Q Secondary 
metabolites 

biosynthesis, 
transport and 
catabolism 

12 12 12 12 12 11 12 

R General 
function 

prediction only 

0 0 0 0 0 0 0 

S Function 
unknown 

90 91 89 91 92 83 88 

T Signal 
transduction 
mechanisms 

9 9 10 10 10 10 9 

U Intracellular 
trafficking, 

secretion, and 
vesicular 
transport 

38 38 38 38 38 40 40 

V Defense 
mechanisms 

4 4 4 4 4 4 4 

W Extracellular 
structures 

0 0 0 0 0 0 0 

X Mobilome: 
prophages, 
transposons 

0 0 0 0 0 0 0 

Y Nuclear 
structure 

0 0 0 0 0 0 0 

Z Cytoskeleton 0 0 0 0 0 0 0 
 

 

 

Appendix Table 8. The Anaplasma capra-positive numbers of goats and Hae. Longicornis in this study by PCR toward different 

gene loci 

Gene loci 
Goats from 
Shandong 

Goats from 
Guizhou 

Hae. longicornis from 
Shandong 

Hae. longicornis 
from Guizhou 

No. of tested 54 18 144 57 
16S rRNA、gltA、groEL、msp4(+) 14 1 0 0 
16S rRNA、gltA、msp4(+) 4 4 0 3 
16S rRNA、gltA、groEL(+) 1 0 0 0 
gltA、groEL、msp4(+) 7 2 0 0 
16S rRNA、gltA(+) 1 0 0 0 
gltA、msp4(+) 0 5 3 2 
gltA(+) 2 2 4 4 
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Appendix Figure 1. The sampling sites where ticks and blood samples were collected in this study. 

Different color and marks represent the types of samples collected in different areas. The flags indicate 

the locations, where the goat blood samples were collected for next-generation sequencing of Anaplasma 

capra genomes. 
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Appendix Figure 2. The comparison between each gltA gene sequences of Anaplasma capra this study 

and sequence from human. The upper right part represents the number of bases that differ from each 

sequence and the lower left part represents the nucleotide identity (%) between each sequence from 

others. 
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Appendix Figure 3. The comparison between each groEL gene sequences of Anaplasma capra this 

study and sequence from human. The upper right part represents the number of bases that differ from 

each sequence and the lower left part represents the nucleotide identity (%) between each sequence 

from others. 
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Appendix Figure 4. The comparison between each 16S rRNA gene sequences of Anaplasma capra this 

study and sequence from human. The upper right part represents the number of bases that differ from 

each sequence and the lower left part represents the nucleotide identity (%) between each sequence 

from others. 
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Appendix Figure 5. The comparison between each msp4 gene sequences of Anaplasma capra this 

study and sequence from human. The upper right part represents the number of bases that differ from 

each sequence and the lower left part represents the nucleotide identity (%) between each sequence 

from others. 


