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Tickborne infections are the most common cause 
of vectorborne disease in the United States (1). 

Disease epidemiology is complex, the result of many 
causes, such as spatiotemporal variation in infected 
vectors, human behavior, reservoir host abundance, 
and climate variation (1,2). Compared with highly 
endemic areas such as the upper Midwest and north-
eastern United States, for the state of Washington, the 
epidemiology and ecology of tickborne diseases is 
not well characterized. Washington is divided into 39 
counties spread across multiple, distinct ecosystems; 
the diverse ecology presents a range of potential vec-
tor habitats.

Human Lyme disease cases, with and without 
travel outside the state within the exposure period, 
have been confirmed in Washington (3). Borrelia burg-
dorferi sensu stricto (s.s.)–infected Ixodes pacificus ticks 
have been documented in far western North Ameri-
ca, including California, USA, and British Columbia, 
Canada (4–6). In addition, a recent study in Wash-
ington documented canine seroprevalence of 3.8 
cases/1,000 dogs (7). Anaplasma phagocytophilum has 
been reported in small mammals (8,9) and in vector 
ticks in California (10); clinical cases of anaplasmosis 
have been reported in dogs from California to British 
Columbia (7,11,12).

Rare cases of autochthonous babesiosis have been 
reported in Washington, 3 caused by Babesia duncani 
and 1 caused by a B. divergens–like organism (13–15). 
Evidence of D. albipictus ticks as the vector for B. dun-
cani has only recently emerged (16).

Three of 11 Ixodes tick species (I. pacificus, I. an-
gustus, and I. spinipalpis) reported from Washington 
are known or suspected vectors for tickborne diseases 

(17). I. pacificus ticks are frequent human-biters, and 
the species is an established vector of B. burgdorferi 
s.s. and A. phagocytophilum and a putative vector of 
B. miyamotoi (18). I. angustus ticks can experimentally 
transmit B. burgdorferi s.s. and might play a role in the 
spirochete’s enzootic cycle (19,20); likewise, I. spini-
palpis ticks might play a role in the natural mainte-
nance of B. burgdorferi sensu lato (s.l.) (21).

Competent reservoirs for B. burgdorferi s.s., in-
cluding deer mice (Peromyscus maniculatus), western 
gray squirrels (Sciurus griseus), and several Tamias 
spp. chipmunks, are found in Washington (22–25). 
P. maniculatus deer mice have been found infected 
with B. burgdorferi s.l. in western Washington (22). Al-
though not recognized as human pathogen reservoirs, 
lizards are notable blood-meal hosts for immature I. 
pacificus ticks (26,27) and 3 lizard species are found 
in Washington: northern alligator lizard (Elgaria coe-
rulea), southern alligator lizard (E. multicarinata), and 
the western fence lizard (Sceloporus occidentalis) (25,28; 
C.S. Arnason, Biology of the western black-legged 
tick, Ixodes pacificus, (Cooley and Kohls, 1943): a po-
tential vector of Lyme disease in south coastal British 
Columbia [master’s thesis], Vancouver: Simon Fraser 
University; 1992). Both E. multicarinata and S. occiden-
talis lizards are zooprophylactic against B. burgdorferi.

Autochthonous cases of Rocky Mountain spotted 
fever (RMSF) were reported in Washington each year 
until the 1940s (29). To date, there is no published 
evidence of R. rickettsii in ticks collected in Washing-
ton. Tularemia is prevalent throughout the Northern 
Hemisphere and occurs in many animal species (30). 
Recent Francisella tularensis antibody detections were 
reported from wildlife in Idaho (31). Up to 10 cases of 
tularemia are reported each year in Washington (29). 
D. andersoni and D. variabilis ticks, both competent 
vectors of R. rickettsii and F. tularensis, occur in the 
state (18,32). The brown dog tick, Rhipicephalus san-
guineus, a known vector of RMSF in the southwest, is 
also reportedly present (33,34).

Borrelia hermsii, the causative agent of tickborne 
relapsing fever (TBRF), occurs in Washington and is 
vectored by Ornithodoros hermsi, a soft tick (family Ar-
gasidae) typically found in rodent nests (35,36). TBRF 
is the most commonly reported autochthonous tick-
borne disease in Washington; up to 12 cases are re-
ported annually (29). The first documented evidence 
of canine infection with B. hermsii was reported in a 
dog with travel to Chelan County, Washington (37). 
B. hermsii–positive O. hermsi ticks have also been doc-
umented in Washington (38).

Human cases of Lyme disease, anaplasmosis, 
ehrlichiosis, babesiosis, spotted fever rickettsioses 

Tickborne diseases are rare in Washington, USA, and 
the ecology of these pathogens is poorly understood. 
We integrated surveillance data from humans and ticks 
to better describe their epidemiology and ecology. During 
2011–2016, a total of 202 tickborne disease cases were 
reported in Washington residents. Of these, 68 (34%) 
were autochthonous, including cases of Lyme disease, 
Rocky Mountain spotted fever, tickborne relapsing fever, 
and tularemia. During May 2011–December 2016, we 
collected 977 host-seeking ticks, including Ixodes paci-
ficus, I. angustus, I. spinipalpis, I. auritulus, Dermacen-
tor andersoni, and D. variabilis ticks. The prevalence of 
Borrelia burgdorferi sensu stricto in I. pacificus ticks was 
4.0%; of B. burgdorferi sensu lato, 3.8%; of B. miyamotoi, 
4.4%; and of Anaplasma phagocytophilum, 1.9%. We did 
not detect Rickettsia rickettsii in either Dermacentor spe-
cies. Case-patient histories and detection of pathogens in 
field-collected ticks indicate that several tickborne patho-
gens are endemic to Washington.
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(including RMSF), TBRF, and tularemia are report-
able to local health jurisdictions in Washington. 
However, clinical underrecognition and under-
reporting of disease are suspected. To clarify the 
epidemiology of tickborne diseases in Washing-
ton, we analyzed locally acquired cases and tick 
surveillance data. Our objectives were to describe 
tickborne disease epidemiology among autochtho-
nous human cases in Washington during the study 
period, as well as Ixodid vectors and pathogen de-
tections in ticks collected in Washington.

Materials and Methods

Human Case Identification
Human tickborne disease cases are identified through 
mandatory, but passive, reporting to local health ju-
risdictions from Washington healthcare providers 
and laboratories testing Washington residents. We re-
viewed all cases of anaplasmosis, ehrlichiosis, Lyme 
disease, babesiosis, TBRF, RMSF, and tularemia re-
ported during 2011–2016. To ensure comparability 
over time, we reclassified cases to the Council for State 
and Territorial Epidemiologists case definitions as of 
2017. Confirmed and probable cases were included 
for each condition. Reclassifications were required for 
Lyme disease, babesiosis, and tularemia. Local health 
jurisdictions interviewed cases in the year of report to 
determine clinical course, travel history, and most like-
ly exposure location. Cases were classified as locally 
acquired (in-state), out-of-state acquired, or unknown 
exposure location based on a standardized definition. 
We evaluated frequency distribution of demographic 
variables for each condition with locally acquired cases.

Tick Surveillance
Washington State Department of Health (DOH) staff 
conducted weekly or biweekly tick drags during 
March–October at 15 sites in 5 counties in western 
Washington that were identified as having suitable 
tick habitat, public access, and relative proximity to 
DOH offices, thus allowing frequent monitoring. We 
sampled 7 sites regularly for >2 years and 8 sites for 
1 year. Sampling was also performed in 2 counties 
deemed most likely exposure locations for locally 
acquired Lyme disease cases reported during 2011–
2016. We conducted surveillance using tick drags, the 
most effective sampling method for both Ixodes and 
Dermacentor ticks. Lack of resources and capacity pre-
vented us from including Argasid tick surveillance as 
part of this study. We sampled by dragging a 1 m2 

piece of flannel on the ground along either a 30-m 
transect or for 30 minutes in a plot created in a specific 

vegetation type. We inspected drags for ticks every 
3–6 meters. We also obtained ticks from partners in 15 
counties who found unattached, unfed ticks on them-
selves and reported GPS collection locations.

Upon collection, we speciated ticks using stan-
dard taxonomic keys, then stored them in vials of 95% 
ethanol at 4°C (17,39,40). We submitted specimens to 
either the Laboratory of Medical Zoology, University 
of Massachusetts–Amherst (Amherst, MA, USA); the 
Centre for Disease Control, British Columbia (Van-
couver, BC, Canada); or the US Centers for Disease 
Control and Prevention (Fort Collins, CO, USA) for 
pathogen testing.

DNA Extraction and Molecular Identification
Pathogen testing varied by laboratory and over time; 
groups of ticks were tested by different laboratories 
for different pathogens. Testing of Ixodes and Der-
macentor ticks followed each laboratory’s protocols 
(33,41–43). Ixodes ticks were tested for A. phagocytophi-
lum, B. burgdorferi s.s. and s.l., B. miyamotoi, B. mayonii, 
Babesia spp., B. microti, Ehrlichia muris–like agent, Po-
wassan virus, Heartland virus, Colorado tick fever vi-
rus, and Bourbon virus. Dermacentor ticks were tested 
for F. tularensis, R. rickettsii, Powassan virus, Heart-
land virus, Colorado tick fever virus, and Bourbon 
virus. B. burgdorferi s.l. detected in ticks tested before 
2015 were not subspeciated.

Results
During 2011–2016, a total of 202 cases of tickborne dis-
ease were reported in Washington residents; because 
of reclassification, this number does not match what is 
reported in Centers for Disease Control and Prevention 
notifiable condition data. Of these cases, 68 (34%) were 
autochthonous: Lyme disease (16 cases), RMSF (2 cases), 
TBRF (25 cases), and tularemia (25 cases). Yearly counts 
of locally acquired tickborne disease cases were low; 
<20 cases were reported annually (Figure 1). Tularemia 
and TBRF were the most frequently reported autoch-
thonous tickborne diseases. All TBRF exposures were 
in eastern Washington, most in Okanogan and Spokane 
counties, whereas tularemia cases were broadly distrib-
uted (Figure 2). Low numbers (2–6 cases) of locally ac-
quired Lyme disease were reported each year; for each 
case, no travel outside Washington during exposure 
periods was reported. We determined likely exposure 
locations based on exposure to tick habitat or known 
tick bite if travel to multiple counties occurred during 
the exposure period; these cases involved 12 counties in 
both eastern and western Washington. 

Only 2 probable cases of RMSF were reported; 
both met the minimum IgG detection value. One 
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case-patient experienced fever, lymphadenopathy, 
and a single ulcerated lesion. The second case-patient 
reported fever and myalgia with no rash and report-
ed a known tick bite; however, the tick was detected 
after symptom onset. Both patients reported likely ex-
posure in north central Washington. 

Tickborne diseases cases were reported through-
out the year; the highest case counts occurred during 
April–October. Lyme disease cases in May, tularemia 
cases in July, and TBRF cases in September.

Lyme disease was the most commonly reported 
imported tickborne disease, and overall case counts 
of imported Lyme disease increased over the study 
period (Figure 3). Low numbers of travel-associated 
anaplasmosis, babesiosis, RMSF, and TBRF were re-
ported. Two cases of blood transfusion–associated 
babesiosis were reported, 1 in 2014 and 1 in 2015. 
The blood donors in each case were Washington resi-
dents with travel history to babesiosis-endemic states 
(Massachusetts and Connecticut). No human cases of 
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Figure 1. Locally acquired 
cases of tickborne diseases, 
Washington, USA, 2011–2016.

Figure 2. Counties of likely exposure for autochthonous human tickborne disease cases, Washington, USA, 2011–2016. A) Lyme 
disease; B) tickborne relapsing fever; C) tularemia; D) Rocky Mountain spotted fever.
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B. miyamotoi infection were reported in Washington 
residents during this period.

We identified no statistically significant differ-
ences in age or gender distribution between case-
patients with locally acquired tickborne disease and 
those with imported cases or unknown exposure his-
tory. Among autochthonous cases, 43% of patients 
were female and 57% male; patient ages ranged from 
7 to 91 years (median 49 years). Patients with import-
ed cases were 39% female and 61% male; ages in this 
group ranged from 3 to 87 years (median 49 years).

During 2011–2016, we collected 977 unfed, 
host-seeking ticks from 53 sites in 19 counties (Ap-
pendix Tables 1, 2, http://wwwnc.cdc.gov/EID/
article/26/4/19-1382-App1.pdf): I. pacificus (n = 438), 
I. spinipalpis (n = 236), I. angustus (n = 99), I. auritulus 
(n = 5), D. andersoni (n = 151), and D. variabilis (n = 46). 
Two Ixodes larvae were unspeciated. The 3 primary 
vector species, I. pacificus, D. andersoni, and D. varia-
bilis, were active predominantly during the spring; 
576/635 (91%) ticks were collected during March–
May. Most ticks collected were adults: 100% D. an-
dersoni and D. variabilis and 96% (420/438) I. pacificus.

We detected B. burgdorferi s.s. in 14/354 (4.0%) I. 
pacificus ticks (Table). However, detections were from 
only 3 of 5 counties where B. burgdorferi subspecia-
tion was conducted: Clallam, 11/121 (9.1%); Klicki-
tat, 2/117 (1.7%); and Yakima, 1/3 (33.3%) (Figure 4). 
In addition, we detected B. burgdorferi s.l. in 16/421 
(3.8%) and B. miyamotoi in 10/227 (4.4%) I. pacificus 
ticks and A. phagocytophilum in 5/258 (1.9%) I. pacifi-
cus ticks. Six I. pacificus ticks were co-infected with 2 
pathogens: 4 with B. burgdorferi s.s. and B. miyamotoi, 
1 with B. burgdorferi s.s. and A. phagocytophilum, and 
1 with Borrelia spp. and A. phagocytophilum. We also 
found A. phagocytophilum in 1/234 (0.4%) I. spinipalpis 
ticks. We detected B. burgdorferi s.l. in 4/235 (1.7%) I. 
spinipalpis ticks and in 1/99 (1.0%) I. angustus ticks. 
We did not detect R. rickettsii or F. tularensis in any 
field-collected Dermacentor ticks.

Discussion
Although Washington is considered a low-incidence 
state for tickborne diseases, our results indicate that 
vector populations in this state are infected with sev-
eral disease-causing agents. Tickborne pathogens 
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Figure 3. Travel-associated cases of 
tickborne diseases, Washington, USA, 
2011–2016.

 
Table. Pathogens detected in unfed, field-collected Ixodes species ticks, Washington state, 2011–2016 

Pathogen 

No. positive/no. tested (%) 
I. angustus 

 
I. pacificus 

 
I. spinipalpis 

Adult Nymphs Adult Nymphs Larvae Adults Nymphs Larvae 
Anaplasma phagocytophilum 0/79 0/16  5/240 (2.1) 0/17 0/1  1/4 (25.0) 0/122 0/108 
Borrelia species* 1/82 (1.2) 0/16  4/361 (1.1) 0/17 0/1  1/5 (20.0) 1/122 (0.8) 0/108 
Borrelia burgdorferi sensu lato 1/83 (1.2) 0/16  22/403 (5.5) 0/17 0/1  1/5 (20.0) 3/122 (4.1) 0/108 
B. burgdorferi sensu stricto 0/41 0/4  14/340 (4.1) 1/14 (7.1) 0/0  0/3 0/63 0/0 
B. miyamotoi 0/38 0/4  10/211 (4.7) 0/16 0/0  0/2 0/67 0/0 
*Not differentiated to species. 
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now considered endemic in at least some areas of 
Washington include B. burgdorferi s.s., B. hermsii, B. 
miyamotoi, and F. tularensis. Evidence exists for the 
presence of A. phagocytophilum, B. duncani, and R. rick-
ettsii, but further information is needed to assess risk. 
Human and animal healthcare providers should be 
aware of the possible risk of these diseases in their 
patients and should be vigilant for consistent symp-
toms paired with exposure histories.

Tick and human surveillance led to a common 
picture of increased activity in the spring. I. pacificus 
ticks infected with B. burgdorferi s.s., B. miyamotoi, 
or A. phagocytophilum were found in 4 of 9 surveyed 

counties. Human Lyme disease case-patients report-
ed exposures in 12 counties. However, overlap in in-
fected vector populations and human cases of Lyme 
disease occurred in just 2 counties, Klickitat and 
Yakima. In the remaining 10 counties, we found no 
positive detections of B. burgdorferi s.s. Field surveil-
lance was not performed in 7 of these counties (Clark, 
Cowlitz, Grant, Island, Kitsap, Lewis, and Pacific); in 
2 (Jefferson, Pierce), all field-collected I. pacificus test-
ed negative or were not tested; and in 1 (Thurston), B. 
burgdorferi s.l. was detected, but not subspeciated. No 
autochthonous human cases of anaplasmosis were re-
ported, so there was no overlap with infected vector  
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Figure 4. Counties with 
collection and testing of unfed, 
field-collected Ixodes pacificus 
ticks and pathogen detections, 
Washington, USA, 2011–2016. 
A) Anaplasma phagocytophilum; 
B) Borrelia bissettiae;  
C) B. burgdorferi sensu lato;  
D) B. burgdorferi sensu stricto; 
E) B. lanei; F) B. miyamotoi;  
G) Borrelia species.
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populations. Lack of systematic tick sampling in sev-
eral of these counties, owing to their distance from 
DOH and resource capacity restraints, resulted in few 
or no unfed ticks collected, thereby limiting patho-
gen detection. Additional surveillance in these areas 
is needed to better describe the pathogen prevalence 
and potential for human–tick encounters.

The higher prevalence of B. burgdorferi s.l. (8.8%) 
and B. burgdorferi s.s. (9.1%) in I. pacificus ticks found 
in Clallam County suggests that >1 competent reser-
voir host exists in the area. The only zooprophylac-
tic host in the area, the northern alligator lizard (E. 
coerulea), is uncommon at the sites where these ticks 
were collected, which might be a contributing fac-
tor to the higher pathogen prevalence. Alternatively, 
the small area sampled might be producing unstable 
prevalence estimates; additional sampling is needed 
to increase confidence in these findings. No human 
case-patients with Lyme disease reported exposure 
in Clallam County, possibly because of limited hu-
man–tick interaction in this area; further studies are 
needed to determine the most likely reservoir and to 
better describe human–vector interactions. All du-
ally infected I. pacificus ticks also were collected in  
Clallam County.

In contrast to Clallam County, Klickitat County I. 
pacificus ticks had much lower prevalence of B. burg-
dorferi s.s., but 2 human patients with Lyme disease 
reported exposure there. The hotter, drier habitat of 
Klickitat County supports populations of all 3 Wash-
ington lizard species, which could be a contributing 
factor to why, despite the abundant tick population, 
the pathogen prevalence is lower.

The almost total lack of pathogen detection in 
field-collected I. angustus ticks suggests that this spe-
cies plays little or no role in the maintenance or trans-
mission of B. burgdorferi in Washington. This finding 
is confirmed by reports from California, Oregon, and 
Washington (44). Small numbers of both I. spinipal-
pis and I. angustus ticks have been found attached to 
humans in Washington and submitted to DOH for 
identification, but their role in pathogen transmission 
remains unknown.

B. miyamotoi was detected at a similar prevalence 
in I. pacificus adults as B. burgdorferi s.s., which is con-
trary to what has been found in other states, where 
prevalence of B. burgdorferi s.s. is often 10-fold higher 
than B. miyamotoi (45). No human cases of B. miyamo-
toi disease have been reported in Washington, which 
is likely attributable to a lack of clinical suspicion and 
testing but could also be attributable to I. pacificus 
ticks being a less efficient vector of B. miyamotoi than 
of B. burgdorferi s.s.

A. phagocytophilum has been reported from dogs, 
but not humans, in Washington. Strain variation of A. 
phagocytophilum with specific host tropism has been 
described (46–48); it is unknown whether the strain in 
Washington is not pathogenic to humans or whether 
the lack of detection in humans is the result of clini-
cal underrecognition. I. pacificus ticks appear to play a 
primary role in maintaining this pathogen in nature, 
although I. spinipalpis ticks might play a minor role.

We detected no Babesia species in any of the ticks 
tested. A recent study implicating D. albipictus ticks 
as the probable vector of B. duncani suggests that the 
appropriate tick species was not tested.

Further, we found no detections of R. rickettsii or 
F. tularensis in unfed ticks, which is consistent with 
findings in other states and suggests that both these 
pathogens are very rare in vector populations. The 
presence of 2 nonpathogenic strains of Rickettsia, in-
cluding R. peacocki, which is refractory to infection 
with and maintenance of R. rickettsii, suggests that R. 
rickettsii could be present only in focal areas, which is 
consistent with other findings (49). Very low or zero 
prevalence of R. rickettsii is supported by human case 
data; only 2 probable cases were reported during the 
study period. Whereas tularemia is relatively com-
mon, the transmission routes for F. tularensis are var-
ied and not limited to tick vectors (50).

Several limitations exist with our study. Field 
surveillance was conducted at a small number of sites 
because of limited resources and efforts to determine 
temporal tick activity. This resulted in inconsistent 
and largely convenience-based tick surveillance cov-
erage across the state. There remains a paucity of 
understanding of what specific reservoirs drive the 
maintenance of these pathogens in nature. However, 
several known, competent reservoirs for B. burgdorferi 
s.s. exist in counties where pathogens were detected 
in the tick population. Little is currently known about 
the epidemiology of R. rickettsii in Washington.

All human case reports described here arose 
from passive surveillance systems; locally acquired 
cases required positive laboratory results. Under-
diagnosis and underreporting of tickborne disease 
are likely, as patients might not seek healthcare and 
healthcare providers might be unaware of the possi-
bility. In addition, common laboratory tests might be 
negative early in the course of illness and true cases 
could be missed, particularly if serologic testing is 
ordered early, rather than nucleic acid detection 
tests. In contrast, many of the diagnostic tests used 
for tickborne diseases have poor specificity (e.g., 
Lyme disease antibody testing) and might cross-
react with other species (e.g., Rickettsia testing). The 
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application of these tests in a low-incidence setting 
decreases their positive predictive value, and some 
of the cases included in this analysis likely represent 
false-positive results. 

The same is likely true for many of the probable 
Lyme disease cases for which symptoms did not meet 
the clinical criteria set in the Council for State and Ter-
ritorial Epidemiologists case definition or for which 
symptom information was not available. Detections 
of Lyme disease in 4 counties (Grant, Jefferson, Kit-
sap, and Lewis) were based on a single probable case 
each; additional evidence for B. burgdorferi s.s. in 
ticks in these counties would help lend certainty to 
these findings. With the exception of Grant County, 
submissions from veterinarians and the general pub-
lic indicate that I. pacificus ticks are present in those 
counties. Similarly, both reported RMSF cases met the 
minimum cutoff value for IgG; based on clinical his-
tories, these results were likely false-positive. Some 
misclassification of human case exposure location is 
probable because there is no way to determine expo-
sure location with certainty. Finally, unknown tick-
borne disease pathogens could be present in Wash-
ington for which diagnostic tests are not available. 
As awareness of tickborne diseases spreads in the 
general population and among healthcare providers, 
we could see an increase in the number of cases as 
a result of improvements in diagnosis and reporting.

Strengths of this study include tracking tick col-
lection methods and feeding status, which enabled 
stratification of tick data for analysis of only field-
collected, unfed ticks. Submissions from host-collect-
ed ticks might not represent the true distribution in 
Washington, instead reflecting the host’s travel histo-
ry and potentially distorting estimates of prevalence. 
In addition, field surveillance drags were conducted 
at known sites and, in most cases, at multiple times 
during the year, providing a better picture of seasonal 
tick activity. Testing of individual ticks, as opposed 
to pooling, provided more exact information about 
pathogen prevalence in each site’s tick population 
and allowed us to assess co-infection rates in individ-
ual ticks. All but a very few ticks were identified to 
species before testing.

We interviewed all human case-patients for ex-
posure history, including travel, enabling us to dis-
tinguish travel-related cases from possible autoch-
thonous cases, which is crucial to understanding 
tickborne disease burden in Washington. The analy-
sis of human and tick data in tandem allowed for a 
more comprehensive picture of pathogen distribu-
tions and prevalence in Washington than analyzing 
either alone.

The true underlying rate of tickborne diseases 
in Washington remains unknown. Several human 
and animal pathogens found in tick populations 
are endemic to Washington, including B. burgdorferi 
s.s., Babesia spp., F. tularensis, B. hermsii, A. phago-
cytophilum, B. miyamotoi, and R. rickettsii; health-
care providers should be vigilant for symptoms of 
disease and exposure histories. The rarity of tick-
borne diseases creates a surveillance and diagnos-
tic challenge; it is difficult to maintain awareness 
and clinical suspicion for these conditions in low-
incidence settings. Surveillance data from field-
collected ticks identified areas of potential human 
risk unidentified by existing human surveillance.  
Ongoing surveillance of both human cases  
and tick vectors is required to determine the true 
burden of disease and to improve public health 
prevention messaging to healthcare providers and 
the public.
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Appendix Table 1. Pathogens detected in unfed, field-collected, adult Ixodes ticks by county, Washington, 2011–2016 

Pathogen, 
county 

No. positive/no. tested (%) 
I. angustus  I. auritulus  I. pacificus  I. spinipalpis 

Adults Nymphs Adults Nymphs Adults Nymphs Larvae Adults Nymphs Larvae 
Anaplasma 
phagocytophilum, 
total 

0/79 0/16 0/1 0/4 5/240 (2.1) 0/17 0/1 1/4 (25.0) 0/122 0/108 

 Clallam  0/22 0/2 0/0 0/4 4/88 (4.8) 0/6 0/0 0/1 0/36 0/0 
 Jefferson  0/0 0/0 0/0 0/0 0/1 0/0 0/0 0/0 0/0 0/0 
 Mason  0/9 0/4 0/0 0/0 0/1 0/4 0/0 1/3 (33.3) 0/58 0/0 
 King  0/9 0/2 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 
 Klickitat  0/0 0 0/0 0/0 0/51 0/4 0/0 0/0 0/0 0/0 
 Pierce  0/17 0/2 0/0 0/0 0/2 0/0 0/1 0/0 0/7 0/108 
 Pacific  0/1 0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 
 Thurston  0/21 0/6 0/1 0/0 0/94 0/3 0/0 0/0 0/21 0/0 
 Yakima  0/0 0 0/0 0/0 1/3 (33.3) 0/0 0/0 0/0 0/0 0/0 
Borrelia 
burgdorferi sensu 
stricto, total 

0/41 0/4 0/0 0/4 14/340 (4.1) 1/14 (7.1) 0/0 0/3 0/63 0/0 

 Clallam  0/22 0/2 0/0  0/4 12/115 (10.4) 0/6 0/0 0/1 0/36 0/0 
 Klickitat  0/0 0/0 0/0 0/0 1/113 (0.9) 1/4 (25.0) 0/0 0/0 0/0 0/0 
 Mason  0/4 0/0 0/0 0/0 0/4 0/2 0/0 0/2 0/8 0/0 
 Pacific  0/1 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 
 Pierce  0/1 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 
 Thurston  0/11 0/2 0/0 0/0 0/105 0/2 0/0 0/0 0/19 0/0 
 Yakima  0/0 0/0 0/0 0/0 1/3 (33.3) 0/0 0/0 0/0 0/0 0/0 
Borrelia 
burgdorferi sensu 
lato, total 

1/99 (1.0) 0/14 0/1 0/4 16/403 (4.0) 0/17 0/1 1/5 (20.0) 3/122 (2.5) 0/108 

 Clallam  0/22 0/2 0/0 0/4 7/74 (9.5) 0/6 0/0 0/1 0/36 0/0 
 Jefferson  0/0 0/0 0/0 0/0 0/1 0/0 0/0 0/0 0/0 0/0 
 Klickitat  0/0 0/0 0/0 0/0 1/50 (2.0) 0/4 0/0 0/0 0/0 0/0 
 Mason  0/4 0/0 0/0 0/0 0/1 0/3 0/0 0/1 0/11 0/0 
 Pacific  0/1 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 
 Pierce  0/1 0/0 0/0 0/0 0/1 0/0 0/0 0/0 0/0 0/0 
 Thurston  0/10 0/2 0/0 0/0 2/81 (2.5) 0/3 0/0 0/0 0/20 0/0 
 Yakima  0/0 0/0 0/0 0/0 0/3 0/0 0/0 0/0 0/0 0/0 
Borrelia 
miyamotoi, total 

0/38 0/4 0/0 0/4 10/211 (4.7) 0/16 0/0 0/2 0/67 0/0 

 Clallam  0/22 0/2 0/0 0/4 7/74 (9.5) 0/6 0/0 0/1 0/36 0/0 
 Jefferson  0/0 0/0 0/0 0/0 0/1 0/0 0/0 0/0 0/0 0/0 
 Klickitat  0/0 0/0 0/0 0/0 1/50 (2.0) 0/4 0/0 0/0 0/0 0/0 
 Mason  0/4 0/0 0/0 0/0 0/1 0/3 0/0 0/1 0/11 0/0 
 Pacific  0/1 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 
 Pierce  0/1 0/0 0/0 0/0 0/1 0/0 0/0 0/0 0/0 0/0 
 Thurston  0/10 0/2 0/0 0/0 2/81 (2.5) 0/3 0/0 0/0 0/20 0/0 
 Yakima  0/0 0/0 0/0 0/0 0/3 0/0 0/0 0/0 0/0 0/0 
Borrelia 
mayonii, total 

1/99 (1.0) 0/14 0/1 0/4 16/403 (4.0) 0/17 0/1 1/5 (20.0) 3/122 (2.5) 0/108 

 Clallam  0/22 0/2 0/0 0/4 0/59 0/6 0/0 0/1 0/35 0/0 
 Klickitat  0/0 0/0 0/0 0/0 0/50 0/4 0/0 0/0 0/0 0/0 
 Mason  0/4 0/0 0/0 0/0 0/1 0/2 0/0 0/1 0/8 0/0 
 Pacific  0/1 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 
 Pierce  0/1 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 
 Thurston  0/9 0/2 0/0 0/0 0/75 0/2 0/0 0/0 0/19 0/0 

https://doi.org/10.3201/eid2604.191382
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Pathogen, 
county 

No. positive/no. tested (%) 
I. angustus  I. auritulus  I. pacificus  I. spinipalpis 

Adults Nymphs Adults Nymphs Adults Nymphs Larvae Adults Nymphs Larvae 
 Yakima  0/0 0/0 0/0 0/0 0/2 0/0 0/0 0/0 0/0 0/0 
Borrelia 
species, total 

1/82 (1.2) 0/16 0/1 1/4 (25.0) 4/361 (1.1) 0/17 0/1 1/5 (20.0) 1/122 (0.8) 0/108 

 Clallam  0/24 0/2 0/0 1/4 (25.0) 3/133 (2.3) 0/6 0/0 0/1 0/37 0/0 
 Jefferson  0/0 0/0 0/0 0/0 0/1 0/0 0/0 0/0 0/0 0/0 
 King  0/9 0/2 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 
 Klickitat  0/0 0/0 0/0 0/0 0/111 0/4 0/0 0/0 0/0 0/0 
 Mason  1/9 (11.1) 0/4 0/0 0/0 0/4 0/4 0/0 1/4 (25.0) 1/58 (1.7) 0/0 
 Pacific  0/1 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 
 Pierce  0/17 0/2 0/0 0/0 0/2 0/0 0/1 0/0 0/7 0/108 
 Thurston  0/22 0/6 0/1 0/0 1/107 (0.9) 0/3 0/0 0/0 0/21 0/0 
 Yakima  0/0 0/0 0/0 0/0 0/3 0/0 0/0 0/0 0/0 0/0 

 
 
 
Appendix Table 2. Pathogens detected in unfed field-collected, adult Dermacentor ticks, Washington, 2012–2016* 

Pathogen County 
No. positive./no. tested (%) 

D. andersoni  D. variabilis 
Rickettsia species, total  0/26 2/46 (4.3) 

Asotin 0/1 0/0 
Benton 0/0 0/3 
Chelan 0/1 0/0 
Ferry 0/1 0/0 

Franklin 0/0 0/1 
Grant 0/0 0/15 
King 0/0 0/1 

Kittitas 0/1 0/0 
Klickitat 0/1 1/12 (8.3) 
Lincoln 0/15 0/3 

Skamania 0/0 0/1 
Spokane 0/5 1/8 (12.5) 
Yakima 0/0 0/2 

Rickettsia peacocki, total  8/22 (36) 2/42 (4.8) 
Benton 0/0 0/3 
Ferry 0/1 0/0 

Franklin 0/0 0/1 
Grant 0/0 1/15 (6.7) 
Kittitas 1/1 (100.0) 0/0 
Klickitat 0/0 0/11 
Lincoln 6/15 (40.0) 0/3 

Skamania 0/0 0/1 
Spokane 1/5 (20.0) 1/8 (12.5) 

Rickettsia rhipicephali, total  2/22 (9.0) 1/42 (2.4) 
Benton 0/0 0/3 
Ferry 0/1 0/0 

Franklin 0/0 0/1 
Grant 0/0 0/15 
Kittitas 0/1 0/0 
Klickitat 0/0 1/11 (9.1) 
Lincoln 2/15 (13.3) 0/3 

Skamania 0/0 0/1 
Spokane 0/5 0/8 

*Dermacentor ticks were not actively collected until 2012. 
 
 
 

 


